【題目】如圖所示,拋物線與軸交于兩點(diǎn),,與軸交于,并且對稱軸.
(1)求拋物線的解析式;
(2)在軸上方的拋物線上,過的直線與直線交于點(diǎn),與軸交于點(diǎn),求的最大值;
(3)點(diǎn)為拋物線對稱軸上一點(diǎn),當(dāng)是以為直角邊的直角三角形時(shí),求點(diǎn)坐標(biāo);
【答案】(1);(2)的最大值為;(3)點(diǎn)的坐標(biāo)為或.
【解析】
(1)利用待定系數(shù)法求解可得;
(2)先求AC解析式,作PH∥y軸交AC于H,作PG⊥y軸,設(shè)出P的坐標(biāo),,由MN的解析式的特點(diǎn)判斷,利用三角函數(shù)把PM,PN的長度轉(zhuǎn)化到PH,PG的上,利用及二次函數(shù)的性質(zhì)進(jìn)一步求解可得;
(3)設(shè)D(-3,y),利用兩點(diǎn)間的距離公式得到 ,然后分類:當(dāng)△ACD是以AC為直角邊、CD為斜邊和以AC為直角邊、AD為斜邊的直角三角形時(shí),分別解方程求出y即可得到對應(yīng)的D點(diǎn)坐標(biāo);
解:(1)∵拋物線過,對稱軸為直線,∴點(diǎn)坐標(biāo)為,
可設(shè)拋物線解析式為,將點(diǎn)代入,得:,
解得,則拋物線解析式為;
(2)設(shè)點(diǎn)坐標(biāo)為,
∴直線解析式為,
過點(diǎn)作軸交于,作軸于,
的解析式為,
,
,
,
的最大值為;
(3)①設(shè),
則,
當(dāng)是以為直角邊、為斜邊的直角三角形時(shí),
,即,
解得,此時(shí);
當(dāng)是以為直角邊、為斜邊的直角三角形時(shí),
,即,
解得,此時(shí)點(diǎn);
綜上,點(diǎn)的坐標(biāo)為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,,,點(diǎn),分別在邊,上(不與端點(diǎn)重合),,射線交延長線于點(diǎn),點(diǎn)在直線上,.
(1)(觀察猜想)如圖1,點(diǎn)在射線上,當(dāng)時(shí),
①線段與的數(shù)量關(guān)系是______;
②的度數(shù)是______;
(2)(探究證明)如圖2點(diǎn)在射線上,當(dāng)時(shí),判斷并證明線段與的數(shù)量關(guān)系,求的度數(shù);
(3)(拓展延伸)如圖3,點(diǎn)在直線上,當(dāng)時(shí),,點(diǎn)是邊上的三等分點(diǎn),直線與直線交于點(diǎn),請直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年2月18日,《感動中國2018年度人物頒獎(jiǎng)盛典》在央視綜合頻道播出,其中鄉(xiāng)村教師張玉滾的事跡令人非常感動某校團(tuán)委組織“支援鄉(xiāng)村教育,幫助教師張玉滾”的捐款活動,以下為九年級(1)班捐款情況:
捐款金額(元) | 5 | 10 | 20 | 50 |
人數(shù)(人) | 12 | 13 | 16 | 11 |
則這個(gè)班學(xué)生捐款金額的中位數(shù)和眾數(shù)分別為( )
A.15,50B.20,20C.10,20D.20,50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在雙曲線y=的第一象限的那一支上,AB垂直于x軸與點(diǎn)B,
點(diǎn)C在x軸正半軸上,且OC=2AB,點(diǎn)E在線段AC上,且AE=3EC,點(diǎn)D為OB的中點(diǎn),若△ADE
的面積為3,則k的值為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣1,0)、點(diǎn)B(3,0)、點(diǎn)C(4,y1),若點(diǎn)D(x2,y2)是拋物線上任意一點(diǎn),有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個(gè)根為﹣1和
其中正確結(jié)論的是_____(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車同時(shí)出發(fā),甲車以60千米/時(shí)的速度沿此公路從地勻速開往地,乙車從地沿此公路勻速開往地,兩車分別到達(dá)目的地后停止.甲、乙兩車相距的路程(千米)與甲車的行駛時(shí)間(時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)乙車的速度為 千米/時(shí), , .
(2)求甲、乙兩車相遇后與之間的函數(shù)關(guān)系式.
(3)當(dāng)甲車到達(dá)距地70千米處時(shí),求甲、乙兩車之間的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n與x軸正半軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C.
(1)利用直尺和圓規(guī),作出拋物線y=x2+mx+n的對稱軸(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若△OBC是等腰直角三角形,且其腰長為3,求拋物線的解析式;
(3)在(2)的條件下,點(diǎn)P為拋物線對稱軸上的一點(diǎn),則PA+PC的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,對角線、相交于點(diǎn).,,點(diǎn)為上一動點(diǎn),點(diǎn)以的速度從點(diǎn)出發(fā)沿向點(diǎn)運(yùn)動.設(shè)運(yùn)動時(shí)間為,當(dāng)________時(shí),為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個(gè)公共點(diǎn),其橫坐標(biāo)為1,則一次函數(shù)的圖像可能是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com