【題目】如圖,C為線段AE上一點(diǎn)(不與點(diǎn)AE重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,連接ADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQOC,以下四個結(jié)論:BOC≌△EDO;DEDP;AOC=∠COE;OCPQ.其中正確的結(jié)論有(  )

A.1B.2C.3D.4

【答案】A

【解析】

證明△ACD△BCE全等,可得∠CAD∠CBE,得出∠AOE120°,作CG⊥ADG,CH⊥BEH,證明△ACG≌△BCHAAS),得出CGCH,證出OC平分∠AOE∠AOC∠COE,正確;證出∠BOC≠∠EDO,得出△BOC△EDO不全等,錯誤;證明△ACP≌△BCQASA),得出APBQPCQC,可推出DPEQ,再根據(jù)△DEQ的角度關(guān)系DE≠DP,可得錯誤.證出PQ∥AE,推出OCAE不垂直,得出OCPQ不垂直,錯誤;即可得出答案.

解:∵△ABC△CDE是等邊三角形,

∴ACBCCDCE,∠ACB∠ECD60°,

∴180°∠ECD180°∠ACB

∠ACD∠BCE,

△ACD△BCE中,,

∴△ACD≌△BCESAS),

∴ADBE,∠CAD∠CBE,

∴∠AOB∠CAD+∠CEB∠CBE+∠CEB∠ACB60°

∴∠AOE120°,

CG⊥ADG,CH⊥BEH,如圖所示:

△ACG△BCH中,,

∴△ACG≌△BCHAAS),

∴CGCH,

∴OC平分∠AOE,

∴∠AOC∠COE,正確;

∵∠BOC∠AOB+∠AOC120°∠DOC∠DOQ+∠COE120°,

∴∠ODC+∠OCD60°

∴∠ODC60°,

∴∠EDO∠CDE+∠ODC120°

∴∠BOC≠∠EDO,

∴△BOC△EDO不全等,錯誤;

∵∠ACB∠ECD60°,

∴∠BCQ180°60°×260°

∴∠ACB∠BCQ60°,

△ACP△BCQ中,,

∴△ACP≌△BCQASA),

∴APBQPCQC,

∵ADBE,

∴ADAPBEBQ,

∴DPQE,

∵∠DQE∠ECQ+∠CEQ60°+∠CEQ,∠CDE60°

∴∠DQE≠∠CDE,故錯誤.

∵PCQC∠PCQ60°,

∴△PCQ是等邊三角形,

∴∠CPQ60°,

∴∠ACB∠CPQ,

∴PQ∥AE

∵∠AOC60°,

當(dāng)OC⊥AE時,∠OAC30°

AP平分∠BAC,

AP不是∠BAC的平分線,

∴OCAE不垂直,

∴OCPQ不垂直,錯誤;

正確的結(jié)論有1個,

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(7分)某中學(xué)1000名學(xué)生參加了環(huán)保知識競賽,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:

成績分組

頻數(shù)

頻率

50≤x<60

8

0.16

60≤x<70

12

a

70≤x<80

0.5

80≤x<90

3

0.06

90≤x≤100

b

c

合計

1

(1)寫出a,b,c的值;

(2)請估計這1000名學(xué)生中有多少人的競賽成績不低于70分;

(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識宣傳活動,求所抽取的2名同學(xué)來自同一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),請你觀察圖中正方形A1B1C1D1,A2B2C2D2A3B3C3D3,……每個正方形四條邊上的整點(diǎn)的個數(shù).按此規(guī)律推算出正方形A2019B2019C2019D2019四條邊上的整點(diǎn)共有_____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,ACBD交于點(diǎn)M,點(diǎn)FAD上,AF=6cm,BF=12cm,FBM=CBM,點(diǎn)EBC的中點(diǎn),若點(diǎn)P1cm/s秒的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)F運(yùn)動;點(diǎn)Q同時以2cm/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動,點(diǎn)P運(yùn)動到F點(diǎn)時停止運(yùn)動,點(diǎn)Q也同時停止運(yùn)動,當(dāng)點(diǎn)P運(yùn)動__秒時,以P、Q、E、F為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.在一次課題設(shè)計活動中,小明對修建一座87m長的水庫大壩提出了以下方案;大壩的橫截面為等腰梯形,如圖,,壩高10m,迎水坡面的坡度,老師看后,從力學(xué)的角度對此方案提出了建議,小明決定在原方案的基礎(chǔ)上,將迎水坡面的坡度進(jìn)行修改,修改后的迎水坡面的坡度

  1. 求原方案中此大壩迎水坡的長(結(jié)果保留根號)
  2. 如果方案修改前后,修建大壩所需土石方總體積不變,在方案修改后,若壩頂沿方向拓寬2.7m,求壩頂將會沿方向加寬多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).

1)畫出△ABC關(guān)于y軸對稱的圖形△ABC′,并寫出點(diǎn)A′、B'、C′的坐標(biāo);

2)在圖中找一點(diǎn)D,以DB、C為頂點(diǎn)畫三角形,使它與△ABC全等,請畫出所有符合條件的△DBC(點(diǎn)D與點(diǎn)A重合除外),并直接寫出點(diǎn)D的坐標(biāo).(提示:當(dāng)點(diǎn)D不唯一時,可用D1D2、D3等加以區(qū)別)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請直接寫出“落點(diǎn)”的個數(shù)和旋轉(zhuǎn)180°時點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是關(guān)于的一元二次方程的兩實(shí)根,的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),、為常數(shù))的圖象如圖所示,下列個結(jié)論:①;為常數(shù),且.其中正確的結(jié)論有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步練習(xí)冊答案