【題目】已知y是x﹣3的正比例函數(shù),且當(dāng)x=2時(shí),y=﹣3.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)求當(dāng)x=1時(shí),y的值;

(3)求當(dāng)y=﹣12時(shí),x的值.

【答案】1;(2;(3

【解析】試題分析:(1)根據(jù)yx-3成正比例,設(shè)出一次函數(shù)的關(guān)系式,再把當(dāng)x=2時(shí),y=-3代入求出k的值即可;

(2))把x=1代入y=3x-9即可求得y的值;

(3)把y=-12代入y=3x-9即可求得x的值.

試題解析:(1)yx-3成正比例,設(shè)出一次函數(shù)的關(guān)系式為:y=k(x-3)(k≠0),

把當(dāng)x=2時(shí),y=-3代入得:-3=k(2-3),k=3,

yx之間的函數(shù)關(guān)系式為:y=3(x-3),

y=3x-9.

(2)把x=1代入y=3x-9得,y=3×1-9=-6;

(3)把y=-12代入y=3x-9得,-12=3x-9,解得x=-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,火車站、碼頭分別位于A,B兩點(diǎn),直線a和b分別表示鐵路與河流.

(1)從火車站到碼頭怎樣走最近,畫圖并說明理由;

(2)從碼頭到鐵路怎樣走最近,畫圖并說明理由;

(3)從火車站到河流怎樣走最近,畫圖并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,已知∠BAC45°,ADBCDBD2,DC3,求AD的長(zhǎng). 小萍同學(xué)靈活運(yùn)用軸對(duì)稱知識(shí),將圖形進(jìn)行翻折變換如圖1.她分別以ABAC為對(duì)稱軸,畫出ABDACD的軸對(duì)稱圖形,D點(diǎn)的對(duì)稱點(diǎn)為EF,延長(zhǎng)EBFC相交于G點(diǎn),得到四邊形AEGF是正方形.設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,即可求出x的值.參考小萍的思路,探究并解答新問題:如圖2,在ABC中,∠BAC30°ADBCD,AD4.請(qǐng)你按照小萍的方法畫圖,得到四邊形AEGF,求BGC的周長(zhǎng).(畫圖所用字母與圖1中的字母對(duì)應(yīng))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】杭紹臺(tái)高鐵項(xiàng)目是國(guó)內(nèi)首批八個(gè)社會(huì)資本投資鐵路示范項(xiàng)目之一,也是中國(guó)首個(gè)民營(yíng)控股高速鐵路項(xiàng)目.該項(xiàng)目可用批復(fù)總投資預(yù)計(jì)448.9億元,資本金占總投資的30%,其中民營(yíng)聯(lián)合體占股51%,其中448.9億元用科學(xué)記數(shù)法表示為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把方程4x=8變形為x=2,其依據(jù)是( )

A.等式的性質(zhì)1B.等式的性質(zhì)2C.分式的基本性質(zhì)D.不等式的性質(zhì)1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=,BE=5.

①求證: ②求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),2次接著運(yùn)動(dòng)到點(diǎn)(2,0),3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過第2 018次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是( )

A. (2018,0) B. (2018,1) C. (2018,2) D. (2017,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B、C、D都在半徑為6的⊙O上,過點(diǎn)C作AC∥BD交OB的延長(zhǎng)線于點(diǎn)A,連接CD,已知∠CDB=∠OBD=30°.
(1)求證:AC是⊙O的切線;
(2)求弦BD的長(zhǎng);
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式a2a成立的條件是( ).

A.不存在這樣的aB.a0

C.a0D.a0

查看答案和解析>>

同步練習(xí)冊(cè)答案