如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小時,則∠AMN+∠ANM的度數(shù)為( 。
A.130°B.120°C.110°D.100°

作A關于BC和CD的對稱點A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN的周長最小值.作DA延長線AH,
∵∠DAB=120°,
∴∠HAA′=60°,
∴∠AA′M+∠A″=∠HAA′=60°,
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,
故選:B.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

將矩形ABCD沿AE折疊,得到如圖所示圖形.若∠CED′=56°,則∠AED的大小是______°.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在Rt△ABC中,AB=BC=6,點E,F(xiàn)分別在邊AB,BC上,AE=3,CF=1,P是斜邊AC上的一個動點,則△PEF周長的最小值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

四巧板也叫”T字之謎”,是一種類似七巧板的智力玩具,其中有大小不同的直角梯形各一塊,等腰直角三角形一塊,凹五邊形一塊.圖1中所示的是一種特殊的四角板,它每塊的頂點都落在小正方形的格點上.
(1)請你通過平移、翻折、旋轉將這四塊拼塊在圖2中無縫隙、不重疊地拼成兩個形狀筆筒的特殊四邊形(長方形、平行四邊形、梯形),要求:拼每個四邊形時,四塊拼塊都用上且各自只能使用一次;
(2)這套特殊的四巧板中,四個拼塊的面積之和為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖A、B兩個村子在河CD的同側,A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設管道費用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設管道的費用最省,并求出其費用.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知長方形ABCD沿著直線BD折疊,使點A落在點E處,EB交DC于F,BC=3,AB=4,則點F到直線DB的距離為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

兩個完全相同的矩形鐵尺隨意放在桌面上(不構成軸對稱圖形),你能通過軸對稱變換使得兩把鐵尺互相重合嗎?如果能,需要變換幾次?畫圖舉例說明對稱變換的過程;如果不能,簡述其理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在等腰三角形ABC中,∠ABC=120°,點P是底邊AC上一個動點,M,N分別是AB,BC的中點,若PM+PN的最小值為2,則△ABC的周長是(  )
A.2B.2+
3
C.4D.4+2
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)在圖1所示編號為①、②、③、④的四個三角形中,關于y軸對稱的兩個三角形的編號為______;關于坐標原點O對稱的兩個三角形的編號為______;
(2)在圖2中,畫出與△ABC關于x軸對稱的△A1B1C1

查看答案和解析>>

同步練習冊答案