【題目】若點(diǎn)P(a,b)在第三象限,則M(-ab,-a)應(yīng)在 ( 。
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,是假命題的是( 。
A. 如果一個(gè)等腰三角形有兩邊長(zhǎng)分別是1,3,那么三角形的周長(zhǎng)為7
B. 等邊三角形的高、角平分線和中線一定重合
C. 兩個(gè)全等三角形的面積一定相等
D. 有兩條邊對(duì)應(yīng)相等的兩個(gè)直角三角形一定全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如3+=(1+)2.善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把類似a+b的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,得:a= ,b= ;
(2)利用探索的結(jié)論,找一組正整數(shù)a、b、m、n (a、b都不超過(guò)20)
填空: + =( + )2;
(3)若a+6=(m+n)2,且a、m、n均為正整數(shù),求a的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,經(jīng)過(guò)點(diǎn)A(0,﹣4)的拋物線y=x2+bx+c與x軸相交于點(diǎn)B(﹣1,0)和C,O為坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)將拋物線y=x2+bx+c向上平移個(gè)單位長(zhǎng)度,再向左平移m(m>0)個(gè)單位長(zhǎng)度,得到新拋物線,若新拋物線的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;
(3)將x軸下方的拋物線圖象關(guān)于x軸對(duì)稱,得到新的函數(shù)圖象C,若直線y=x+k與圖象C始終有3個(gè)交點(diǎn),求滿足條件的k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BCD是一條直線,∠1=∠B,∠2=∠A,指出∠1的同位角,∠2的內(nèi)錯(cuò)角,并求出∠A+∠B+∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列單項(xiàng)式:﹣a,2a2 , ﹣3a3 , 4a4 , ﹣5a5 , …可以得到第2016個(gè)單項(xiàng)式是;第n個(gè)單項(xiàng)式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下列所給線段長(zhǎng)為三邊,能構(gòu)成直角三角形的是( )
A. 3cm、4cm、5cm B. 9cm、16cm、25cm
C. 5cm、12cm、15cm D. 8cm、15cm、16cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=900,AC=BC,D為AB中點(diǎn).E、F分別從A、C同時(shí)出發(fā),以每秒1個(gè)單位速度分別向C、B運(yùn)動(dòng)(分別到達(dá)C、B后停止運(yùn)動(dòng))
(1)求證:①DE=DF;②DE⊥DF.
(2)若AB=.運(yùn)動(dòng)時(shí)間為t.
①求△AED面積S與t的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;
②若△BDF為等腰三角形,求t;
③連接EF,若EF最小,求t.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com