【題目】如圖,M是線段AB上一點,AB16cm,CD兩點分別從M,B同時出發(fā),點C1cm/s的速度向點A運動,點D3cm/s的速度向點M運動當一點到達終點時,另一點也停止運動.

1)當AM6cm,點C,D運動了2s時,求這時ACMD的數(shù)量關系;

2)若AM6cm,請你求出點C,D運動多少s時,點C,D的距離等于7cm

3)若點C,D運動時,總有MD3AC,求AM的長.

【答案】(1)ACMD;(2t;(34

【解析】

1)根據(jù)路程、速度、時間之間的等量關系即可求出答案;

2)當AM6時,此時MB10,點C到達終點所用時間為6s,點D到達終點所用時間為s,設點CD運動ts時,CD7,且0≤t≤,列出方程即可求出答案;

3)設點A在數(shù)軸上表示的數(shù)為0,點B在數(shù)軸上表示的數(shù)為16,點M在數(shù)軸上表示的數(shù)為m,設C、D運動的時間為ts,由題意可知:點C在數(shù)軸上所表示的數(shù)為mt,點D在數(shù)軸上所表示的數(shù)為163t,由于MD3AC,所以|163tm|3|mt|,分情況討論即可求出答案;

解:(1)當AM6時,此時MB10,

∴CM2×12,DB2×36

∴ACAMCM4,MDMBDB4,

∴ACMD

2)當AM6時,此時MB10,

C到達終點所用時間為6s,點D到達終點所用時間為s,

設點C,D運動ts時,CD7,且0≤t≤,

根據(jù)題意可知:t+103t7,

解得:t;

3)設點A在數(shù)軸上表示的數(shù)為0,點B在數(shù)軸上表示的數(shù)為16,點M在數(shù)軸上表示的數(shù)為m,

C、D運動的時間為ts,

由題意可知:點C在數(shù)軸上所表示的數(shù)為mt

D在數(shù)軸上所表示的數(shù)為163t,

∵MD3AC

∴|163tm|3|mt|,

163tm3mt)時,

此時m4

AM4,

163tm=﹣3mt),

∴m3t8,

此時AM3t8(不符合題意),

綜上所述,AM4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將一副直角三角板按如圖1擺放在直線AD直角三角板OBC和直角三角板MON,,,,,保持三角板OBC不動,將三角板MON繞點O以每秒的速度順時針方向旋轉(zhuǎn)t

如圖2,______度用含t的式子表示;

在旋轉(zhuǎn)的過程中,是否存在t的值,使?若存在,請求出t的值;若不存在,請說明理由.

直線AD的位置不變,若在三角板MON開始順時針旋轉(zhuǎn)的同時,另一個三角板OBC也繞點O以每秒的速度順時針旋轉(zhuǎn).

______秒時,;

請直接寫出在旋轉(zhuǎn)過程中,的數(shù)量關系關系式中不能含

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】健身運動已成為時尚,某公司計劃組裝A、B兩種型號的健身器材共40套,捐給社區(qū)健身中心. 組裝一套A型健身器材需甲種部件7個和乙種部件4個,組裝一套B型健身器材需甲種部件3個和乙種部件6.公司現(xiàn)有甲種部件240個,乙種部件196.

(1)公司在組裝A、B兩種型號的健身器材時,共有多少種組裝方案?

(2)組裝一套A型健身器材需費用20元,組裝一套B型健身器材需費用18元,求總組裝費用最少的組裝方案,最少總組裝費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面內(nèi)有四個點A,BC,D. 根據(jù)下列語句畫圖:

①畫直線BC;

②畫射線AD交直線于點E;

③連接BD,用圓規(guī)在線段BD的延長線上截取DF=BD;

④在圖中確定點O,使點O到點A,B,C,D的距離之和最小.

(友情提醒:截取用圓規(guī),并保留痕跡;畫完圖要下結(jié)論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的st的關系.

(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關系式.

(4)2小時后,兩車相距多少千米?

(5)行駛多長時間后,A、B兩車相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于數(shù)軸上的A,B,C三點,給出如下定義:若其中一個點與其它兩個點的距離恰好滿足2倍的數(shù)量關系,則稱該點是其它兩個點的“聯(lián)盟點”.

例如數(shù)軸上點A,B,C所表示的數(shù)分別為1,3,4,此時點B是點A, C的“聯(lián)盟點”.

1)若點A表示數(shù)-2, 點B表示的數(shù)2,下列各數(shù),0,4,6所對應的點分別C1,C2 C3 ,C4,其中是點A,B的“聯(lián)盟點”的是 ;

(2)點A表示數(shù)-10, 點B表示的數(shù)30,P在為數(shù)軸上一個動點:

①若點P在點B的左側(cè),且點P是點A, B的“聯(lián)盟點”,求此時點P表示的數(shù);

②若點P在點B的右側(cè),點P,A, B中,有一個點恰好是其它兩個點的“聯(lián)盟點”,寫出此時點P表示的數(shù) .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課外活動時間,甲、乙、丙、丁4名同學相約進行羽毛球比賽.

(1)如果將4名同學隨機分成兩組進行對打,求恰好選中甲乙兩人對打的概率;

(2)如果確定由丁擔任裁判,用“手心、手背”的方法在另三人中競選兩人進行比賽.競選規(guī)則是:三人同時伸出“手心”或“手背”中的一種手勢,如果恰好只有兩人伸出的手勢相同,那么這兩人上場,否則重新競選.這三人伸出“手心”或“手背”都是隨機的,求一次競選就能確定甲、乙進行比賽的概率.

【答案】(1);(2)

【解析】分析:列舉出將4名同學隨機分成兩組進行對打所有可能的結(jié)果,找出甲乙兩人對打的情況數(shù),根據(jù)概率公式計算即可.

畫樹狀圖寫出所有的情況,根據(jù)概率的求法計算概率.

詳解:(1)甲同學能和另一個同學對打的情況有三種:

(甲、乙),(甲、丙),(甲、丁)

則恰好選中甲乙兩人對打的概率為:

(2)樹狀圖如下:

一共有8種等可能的情況,其中能確定甲乙比賽的可能為(手心、手心、手背)、(手背、手背、手心)兩種情況,因此,一次競選就能確定甲、乙進行比賽的概率為.

點睛:考查概率的計算,明確概率的意義時解題的關鍵,概率等于所求情況數(shù)與總情況數(shù)的比.

型】解答
結(jié)束】
22

【題目】為了“綠化環(huán)境,美化家園”,312日(植樹節(jié))上午8點,某校901、902班同學同時參加義務植樹.901班同學始終以同一速度種植樹苗,種植樹苗的棵數(shù)y1與種植時間x(小時)的函數(shù)圖象如圖所示;902班同學開始以1小時種植40棵的速度工作了1.5小時后,因需更換工具而停下休息半小時更換工具后種植速度提高至原來的1.5倍.

(1)902班同學上午11點時種植的樹苗棵數(shù);

(2)分別求出901班種植數(shù)量y1、902班種植數(shù)量y2與種植時間x(小時)之間的函數(shù)關系式,并在所給坐標系上畫出y2關于x的函數(shù)圖象;

(3)已知購買樹苗不多于120棵時,每棵樹苗的價格是20元;購買樹苗超過120棵時,超過的部分每棵價格17元.若本次植樹所購樹苗的平均成本是18元,則兩班同學上午幾點可以共同完成本次植樹任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018個正整數(shù)12,34,,2018按如圖方式排列成一個表.

1)用如圖方式框住表中任意4個數(shù),記左上角的一個數(shù)為,則另三個數(shù)用含的式子表示出來,從小到大依次是__________、___________、_______________(請直接填寫答案);

2)用(1)中方式被框住的4個數(shù)之和可能等于2019嗎?如果可能,請求出的值;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20199月,小軍順利升入初中,為學習需要,準備購買若干個創(chuàng)意筆記本,甲、乙兩家文具店都有足夠數(shù)量的創(chuàng)意筆記本,這兩家文具店創(chuàng)意筆記本標價都是每個8元,甲文具店的銷售方案是:購買創(chuàng)意筆記本的數(shù)量不超過6個時,原價銷售;購買創(chuàng)意筆記本超過6個時,從第7個開始按標價的出售;乙文具店的銷售方案是:不管購買多少個創(chuàng)意筆記本,一律按標價的出售.

1)若設小軍要購買個創(chuàng)意筆記本,請用含的代數(shù)式分別表示小軍到甲文具店和乙文具店購買全部創(chuàng)意筆記本所需的費用;

2)小軍購買多少個創(chuàng)意筆記本時,到甲、乙兩家文具店購買全部創(chuàng)意筆記本所需的費用相同?

查看答案和解析>>

同步練習冊答案