【題目】有兩個(gè)不同形狀的計(jì)算器(分別記為A,B)和與之匹配的保護(hù)蓋(分別記為a,b)(如圖所示)散亂地放在桌子上.
(1)若從計(jì)算器中隨機(jī)取一個(gè),再?gòu)谋Wo(hù)蓋中隨機(jī)取一個(gè),求恰好匹配的概率.
(2)若從計(jì)算器和保護(hù)蓋中隨機(jī)取兩個(gè),用樹形圖法或列表法,求恰好匹配的概率.
【答案】(1)P(恰好匹配)=.
(2)樹狀圖見(jiàn)解析,P(恰好匹配)=.
【解析】
試題分析:(1)采用列舉法比較簡(jiǎn)單,要注意不重不漏;
(2)此題需要兩步完成,所以采用樹狀圖法或者采用列表法都比較簡(jiǎn)單;解題時(shí)要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn),此題屬于不放回實(shí)驗(yàn).
試題解析:(1)從計(jì)算器中隨機(jī)抽取一個(gè),再?gòu)谋Wo(hù)蓋中隨機(jī)取一個(gè),有Aa,Ab,Ba,Bb四種情況.
恰好匹配的有Aa,Bb兩種情況,
∴P(恰好匹配)=.
(2)用樹形圖法表示:
所有可能的結(jié)果AB,Aa,Ab,BA,Ba,Bb,aA,aB,ab,bA,bB,ba,
可見(jiàn),從計(jì)算器和保護(hù)蓋中隨機(jī)取兩個(gè),共有12種不同的情況.
其中恰好匹配的有4種,分別是Aa,Bb,aA,bB,
∴P(恰好匹配)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,點(diǎn)E在⊙O上,∠EAB的平分線交⊙O于點(diǎn)C,過(guò)點(diǎn)C作AE的垂線,垂足為D,直線DC與AB的延長(zhǎng)線交于點(diǎn)P.
(1)判斷直線PC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若tan∠P=,AD=6,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,CD⊥BC于點(diǎn)C,交∠ABC的平分線于點(diǎn)D,AE平分∠BAC交BD于點(diǎn)E,過(guò)點(diǎn)E作EF∥BC交AC于點(diǎn)F,連接DF.
(1)補(bǔ)全圖1;
(2)如圖1,當(dāng)∠BAC=90°時(shí),
①求證:BE=DE;
②寫出判斷DF與AB的位置關(guān)系的思路(不用寫出證明過(guò)程);
(3)如圖2,當(dāng)∠BAC=α時(shí),直接寫出α,DF,AE的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在密碼學(xué)中,直接可以看到內(nèi)容為明碼,對(duì)明碼進(jìn)行某種處理后得到的內(nèi)容為密碼、有一種密碼,將英文26個(gè)字母a,b,c…,z(不論大小寫)依次對(duì)應(yīng)1,2,3,…,26這26個(gè)自然數(shù).當(dāng)明碼字母對(duì)應(yīng)的序號(hào)x為奇數(shù)時(shí),密碼字母對(duì)應(yīng)的序號(hào)是;當(dāng)明碼字母對(duì)應(yīng)的序號(hào)x為偶數(shù)時(shí),密碼字母對(duì)應(yīng)的序號(hào)是+14.按上述規(guī)定,將明碼“hope”譯成密碼是( )
字母 | a | b | c | d | e | f | g | h | i | j | k | l | m |
序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
字母 | n | o | p | q | r | s | t | u | v | w | x | y | z |
序號(hào) | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
A.gawqB.rivdC.giheD.hope
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】海上有一小島,為了測(cè)量小島兩端A、B的距離,測(cè)量人員設(shè)計(jì)了一種測(cè)量方法,如圖所示,已知B點(diǎn)是CD的中點(diǎn),E是BA延長(zhǎng)線上的一點(diǎn),測(cè)得AE=10海里,DE=30海里,且DE⊥EC,cos∠D=.
(1)求小島兩端A、B的距離;
(2)過(guò)點(diǎn)C作CF⊥AB交AB的延長(zhǎng)線于點(diǎn)F,求sin∠BCF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D是 AB邊上一點(diǎn),連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對(duì)邊分別為a、b、c,下列說(shuō)法中錯(cuò)誤的是( )
A.如果∠C-∠B=∠A,則△ABC是直角三角形,且∠C=90;
B.如果,則△ABC是直角三角形,且∠C=90;
C.如果(c+a)( c-a)=,則△ABC是直角三角形,且∠C=90;
D.如果∠A:∠B:∠C=3:2:5,則△ABC是直角三角形,且∠C=90.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC.問(wèn):此時(shí)直線ON是否平分∠AOC?請(qǐng)說(shuō)明理由.
(2)將圖1中的三角板繞點(diǎn)O以每秒10°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,則 t的值為 秒(直接寫出結(jié)果).
(3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,試探索:在旋轉(zhuǎn)過(guò)程中,∠AOM與∠NOC的差是否發(fā)生變化?若不變,請(qǐng)求出這個(gè)差值;若變化,請(qǐng)求出差的變化范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com