【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF= ∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長.

【答案】
(1)

證明:連接AE,

∵AB是⊙O的直徑,

∴∠AEB=90°,

∴∠1+∠2=90°.

∵AB=AC,

∴∠1= ∠CAB.

∵∠CBF= ∠CAB,

∴∠1=∠CBF

∴∠CBF+∠2=90°

即∠ABF=90°

∵AB是⊙O的直徑,

∴直線BF是⊙O的切線.


(2)

解:過點C作CG⊥AB于G.

∵sin∠CBF= ,∠1=∠CBF,

∴sin∠1= ,

∵在Rt△AEB中,∠AEB=90°,AB=5,

∴BE=ABsin∠1= ,

∵AB=AC,∠AEB=90°,

∴BC=2BE=2 ,

在Rt△ABE中,由勾股定理得AE= =2 ,

∴sin∠2= = = ,cos∠2= = =

在Rt△CBG中,可求得GC=4,GB=2,

∴AG=3,

∵GC∥BF,

∴△AGC∽△ABF,

∴BF= =


【解析】(1)連接AE,利用直徑所對的圓周角是直角,從而判定直角三角形,利用直角三角形兩銳角相等得到直角,從而證明∠ABF=90°;  
   。2)利用已知條件證得△AGC∽△ABF,利用比例式求得線段的長即可.
【考點精析】掌握勾股定理的概念和圓周角定理是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在長方形ABCD中,AB=2,BC=1,動點P從點B出發(fā),沿路線B→C→D做勻速運動,那么△ABP的面積S與點P運動的路程x之間的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇同學(xué)要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,

求證:四邊形ABCD是四邊形.
(1)在方框中填空,以補全已知和求證;
(2)按嘉淇的想法寫出證明;
(3)用文字敘述所證命題的逆命題為平行四邊形兩組對邊分別相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是直角邊長為2a的等腰直角三角形,直角邊AB是半圓O1的直徑,半圓O2過C點且與半圓O1相切,則圖中陰影部分的面積是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1 , S2 , S3 , …,S10 , 則S1+S2+S3+…+S10=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點,且 = ,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為( 。

A.45°
B.50°
C.55°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弦BD=BA,BE⊥DC交DC的延長線于點E.

(1)求證:∠1=∠BAD;
(2)求證:BE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= 與y=﹣kx2+k(k≠0)在同一直角坐標系中的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么下列結(jié)論: ①a<0,②b<0,③c<0,
其中正確的判斷是(

A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

同步練習(xí)冊答案