(2002•南昌)如圖,AB=AE,∠ABC=∠AED,BC=ED,點F是CD的中點.
(1)求證:AF⊥CD;
(2)在你連接BE后,還能得出什么新的結(jié)論?請寫出三個(不要求證明).

【答案】分析:(1)連接AC,AD,利用SAS證明△ABC≌△AED,運用全等三角形的對應(yīng)邊相等得AC=AD,所以△ACD為等腰三角形,再利用三線合一得AF⊥CD.
(2)連接后得到線段之間的位置或數(shù)量關(guān)系,角之間的數(shù)量關(guān)系及三角形全等等知識.
解答:(1)證明:連接AC,AD.
在△ABC和△AED中
∴△ABC≌△AED(SAS).
∴AC=AD.
∴△ACD為等腰三角形.
又∵F是CD中點,
∴AF⊥CD.

(2)解:AF⊥BE,BE∥CD,連接BE后交AF于點G,△ABG≌△AEG.
點評:三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主,判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2002•南昌)如圖,正三角形ABC的邊長為6厘米,⊙O的半徑為r厘米,當(dāng)圓心O從點A出發(fā),沿著線路AB-BC-CA運動,回到點A時,⊙O隨著點O的運動而移動.
(1)若r=厘米,求⊙O首次與BC邊相切時,AO的長.
(2)在⊙O移動過程中,從切點的個數(shù)來考慮,相切有幾種不同的情況寫出不同情況下X的取值范圍及相應(yīng)的切點個數(shù).
(3)設(shè)⊙O在整個移動過程中,在△ABC內(nèi)部、⊙O未經(jīng)過的部分的面積為S,在S>0時,求S關(guān)于r的函數(shù)解析式,并寫出自變量r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(11)(解析版) 題型:解答題

(2002•南昌)如圖,正三角形ABC的邊長為6厘米,⊙O的半徑為r厘米,當(dāng)圓心O從點A出發(fā),沿著線路AB-BC-CA運動,回到點A時,⊙O隨著點O的運動而移動.
(1)若r=厘米,求⊙O首次與BC邊相切時,AO的長.
(2)在⊙O移動過程中,從切點的個數(shù)來考慮,相切有幾種不同的情況寫出不同情況下X的取值范圍及相應(yīng)的切點個數(shù).
(3)設(shè)⊙O在整個移動過程中,在△ABC內(nèi)部、⊙O未經(jīng)過的部分的面積為S,在S>0時,求S關(guān)于r的函數(shù)解析式,并寫出自變量r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:解答題

(2002•南昌)如圖,正三角形ABC的邊長為6厘米,⊙O的半徑為r厘米,當(dāng)圓心O從點A出發(fā),沿著線路AB-BC-CA運動,回到點A時,⊙O隨著點O的運動而移動.
(1)若r=厘米,求⊙O首次與BC邊相切時,AO的長.
(2)在⊙O移動過程中,從切點的個數(shù)來考慮,相切有幾種不同的情況寫出不同情況下X的取值范圍及相應(yīng)的切點個數(shù).
(3)設(shè)⊙O在整個移動過程中,在△ABC內(nèi)部、⊙O未經(jīng)過的部分的面積為S,在S>0時,求S關(guān)于r的函數(shù)解析式,并寫出自變量r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•南昌)如圖,正三角形ABC的邊長為6厘米,⊙O的半徑為r厘米,當(dāng)圓心O從點A出發(fā),沿著線路AB-BC-CA運動,回到點A時,⊙O隨著點O的運動而移動.
(1)若r=厘米,求⊙O首次與BC邊相切時,AO的長.
(2)在⊙O移動過程中,從切點的個數(shù)來考慮,相切有幾種不同的情況寫出不同情況下X的取值范圍及相應(yīng)的切點個數(shù).
(3)設(shè)⊙O在整個移動過程中,在△ABC內(nèi)部、⊙O未經(jīng)過的部分的面積為S,在S>0時,求S關(guān)于r的函數(shù)解析式,并寫出自變量r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年江西省南昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•南昌)如圖,正三角形ABC的邊長為6厘米,⊙O的半徑為r厘米,當(dāng)圓心O從點A出發(fā),沿著線路AB-BC-CA運動,回到點A時,⊙O隨著點O的運動而移動.
(1)若r=厘米,求⊙O首次與BC邊相切時,AO的長.
(2)在⊙O移動過程中,從切點的個數(shù)來考慮,相切有幾種不同的情況寫出不同情況下X的取值范圍及相應(yīng)的切點個數(shù).
(3)設(shè)⊙O在整個移動過程中,在△ABC內(nèi)部、⊙O未經(jīng)過的部分的面積為S,在S>0時,求S關(guān)于r的函數(shù)解析式,并寫出自變量r的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案