【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調控的手段達到節(jié)水的目的,該市自來水收貴的價目表如下(注:水費按月份結算,表示立方米)

價目表

每月用水量

價格

不超過的部分

超出不超出的部分

超出的部分

某戶居民1月份和2月份的用水量分別為,則應收水費分別是 元和

若該戶居民月份用水量(其中),則應收水費多少元? (用含的式子表示,并化簡)

若該戶居民兩個月共用水 (月份用水量超過月份),設月份用水,求該戶居民兩個月共交水費多少元? (用含 的式子表示,并化簡)

【答案】11020;(2)應收水費(4a-12)元;(30x≤4時, 52-4x;當4x≤6時,-2x+44;當6x7時,32

【解析】

11月份用水,則按第一檔繳費;2月份用水,則按第二檔繳費;

2)由于月份用水量(其中),根據(jù)繳費的形式得到6×2+(a-6)×4化簡即可;

3)分類討論:當0x4時;當4x6時;當6x7時,然后根據(jù)各檔的繳費列代數(shù)式即可.

解:(1)該用戶1月份用水,應交水費:5×210(元);

該用戶2月份用水,應交水費:6×24×220(元);

故答案為:10,20

2)由依題意得:6×2+(a-6)×44a-12(元)

答:應收水費(4a-12)元;

30x≤4時,

該戶居民45兩個月共繳水費=2x124×4614x10)=524x;

4x≤6時,

該戶居民45兩個月共繳水費=2x124×(14x6)=-2x44;

6x7時,

該戶居民4、5兩個月共繳水費=124x6)+124×(14x6)=32

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,過點O作兩條射線OMON,且AOMCON90°

(1)OC平分AOM,求AOD的度數(shù).

(2)∠1BOC,求AOCMOD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國南宋著名數(shù)學家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中是我國市制長度單位,1=500米,則該沙田的面積為(  )

A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學活動課上,小明提出這樣一個問題:∠B=∠C90°,EBC的中點,DE平分∠ADC,∠CDE55°.如圖,則∠EAB的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB=ACAE=AF,連結BFCE,交于O,連結AO.求證:

1B=∠C

2AO平分BAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ABAC,高BD、CE相交于點O,連接AO并延長交BC于點F,則圖中全等的直角三角形共有( 。

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,E是邊CD上一點(點E不與點C、D重合),連結BE.

(感知)如圖①,過點AAFBEBC于點F.易證ABF≌△BCE.(不需要證明)

(探究)如圖②,取BE的中點M,過點MFGBEBC于點F,交AD于點G.

(1)求證:BE=FG.

(2)連結CM,若CM=1,則FG的長為   

(應用)如圖③,取BE的中點M,連結CM.過點CCGBEAD于點G,連結EG、MG.若CM=3,則四邊形GMCE的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,正方形ABCD中,P是邊BC上一點,BEAP,DFAP,垂足分別是點E、F.

(1)求證:EF=AE﹣BE;

(2)聯(lián)結BF,如課=.求證:EF=EP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張矩形大鐵皮切割成九塊,切痕如下圖虛線所示,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長寬分別是、的全等小矩形,且

(1)用含的代數(shù)式表示切痕的總長為 ;

(2)若每塊小矩形的面積為,四個正方形的面積和為,試求該矩形大鐵皮的周長.

查看答案和解析>>

同步練習冊答案