在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).

(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫(xiě)出這種變換的過(guò)程 ▲ 
(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請(qǐng)寫(xiě)出求解過(guò)程.

(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BABC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以ADAFAH為三邊能否構(gòu)成三角形?若能構(gòu)成,請(qǐng)判斷這個(gè)三角形的形狀,若不能構(gòu)成,請(qǐng)說(shuō)明理由.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請(qǐng)利用圖形變換探究SAOB'+SBOC'+SCOA'的大小關(guān)系.
(1)將△ABC繞點(diǎn)O旋轉(zhuǎn)180°(2)60°,理由見(jiàn)解析(3)能夠構(gòu)成三角形,理由見(jiàn)解析(4)SAOB'SB'PRSPQA解析:
解:(1)將△ABC繞點(diǎn)O旋轉(zhuǎn)180°后可得到△ADC …………………………2分
(缺旋轉(zhuǎn)中心或旋轉(zhuǎn)角各扣1分)
(2)連接BB',由題意得EF垂直平分BC,故BB'B'C,由翻折可得,
B'CBC,∴△BB'C為等邊三角形.∴∠B'CB=60°,
(或由三角函數(shù)FCB'C=1:2求出∠B'CB=60°也可以.)
∴∠B'CG=30°,∴∠B'GC=60°………………………………………5分
(3)能夠構(gòu)成三角形……………………………………………………………6分
分別取CEEG、GI的中點(diǎn)P、QR,連接DP、FQHR、AD、AF、AH,∵△ABC中,BABC,根據(jù)平移變換的性質(zhì),△CDE、△EFG和△GHI都是等腰三角形,∴DPCEFQEG,HRGI
在Rt△AHR中,AHAI=4a,AH2HR2AR2,HR2a2
DP2FQ2HR2a2,
AD2AP2DP2=6a2,AF2AQ2FQ2=10a2,
新三角形三邊長(zhǎng)為4a、a、a
AH2AD2AF2   ∴新三角形為直角三角形.………………………8分
(或通過(guò)轉(zhuǎn)換得新三角形三邊就是AD、DI、AI

(4)將△BOC'沿BB'方向平移2個(gè)單位,所移成的三角形記為△B'PR,將△COA'沿A'A方向平移2個(gè)單位,所移成的三角形記為△AQR.由于OQOAAQOAOA'AA'=4,OPOB'B'POB'OBBB'=4.又∠QOP=60°,則PQOQOP=4,
又因?yàn)?i>QR+PROCOC',故OR、P三點(diǎn)共線.因?yàn)?i>SQOP=4,所以SAOB'SBOC'SCOA'SAOB'SB'PRSPQA…………………… …………10分

根據(jù)旋轉(zhuǎn)的性質(zhì)和平移變換的性質(zhì)求解
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•新區(qū)二模)在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).
(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫(xiě)出這種變換的過(guò)程
將△ABC繞點(diǎn)O旋轉(zhuǎn)180°后可得到△ADC
將△ABC繞點(diǎn)O旋轉(zhuǎn)180°后可得到△ADC


(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B′處(如圖2-2),這樣能得到∠B′GC的大小,你知道∠B′GC的大小是多少嗎?請(qǐng)寫(xiě)出求解過(guò)程.
(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,AC長(zhǎng)為a,現(xiàn)以AD、AF和AH為三邊構(gòu)成一個(gè)新三角形,已知這個(gè)新三角形面積小于15
15
,請(qǐng)你幫助該小組求出a可能的最大整數(shù)值.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:
如圖4-1,已知AA′=BB′=CC′=2,∠AOB′=∠BOC′=∠COA′=60°,請(qǐng)利用圖形變換探究S△AOB′+S△BOC′+S△COA′
3
的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).

(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫(xiě)出這種變換的過(guò)程  ▲ 

(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請(qǐng)寫(xiě)出求解過(guò)程.

(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BABC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以AD、AFAH為三邊能否構(gòu)成三角形?若能構(gòu)成,請(qǐng)判斷這個(gè)三角形的形狀,若不能構(gòu)成,請(qǐng)說(shuō)明理由.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請(qǐng)利用圖形變換探究SAOB'+SBOC'+SCOA'的大小關(guān)系.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省無(wú)錫市新區(qū)九年級(jí)二模數(shù)學(xué)卷(帶解析) 題型:解答題

在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).

(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫(xiě)出這種變換的過(guò)程 ▲ 
(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請(qǐng)寫(xiě)出求解過(guò)程.

(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BABC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以ADAFAH為三邊能否構(gòu)成三角形?若能構(gòu)成,請(qǐng)判斷這個(gè)三角形的形狀,若不能構(gòu)成,請(qǐng)說(shuō)明理由.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請(qǐng)利用圖形變換探究SAOB'+SBOC'+SCOA'的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省無(wú)錫市新區(qū)九年級(jí)二模數(shù)學(xué)卷(解析版) 題型:解答題

在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).

(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫(xiě)出這種變換的過(guò)程  ▲ 

(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請(qǐng)寫(xiě)出求解過(guò)程.

(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BABC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以ADAFAH為三邊能否構(gòu)成三角形?若能構(gòu)成,請(qǐng)判斷這個(gè)三角形的形狀,若不能構(gòu)成,請(qǐng)說(shuō)明理由.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請(qǐng)利用圖形變換探究SAOB'+SBOC'+SCOA'的大小關(guān)系.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案