【題目】如圖,長方形ABCD的紙片,長AD=10厘米,寬AB=8厘米,AD沿點A對折,點D正好落在BC上的點F處,AE是折痕。

(1)圖中有全等的三角形嗎?如果有,請直接寫出來;

(2)求線段BF的長;

(3)求線段EF的長;

【答案】(1)有,(2)線段BF的長為6厘米;(3)線段EF的長為5厘米.

【解析】

(1)直接利用翻折變換的性質(zhì)得出△ADE≌△AFE;

(2)利用勾股定理得出BF即可;

3中利用勾股定理.

解:1

(2AD沿點A對折,點D正好落在BC上的點F處,AE是折痕,

AF=AD=10厘米,

中,AB=8厘米,AF= 10厘米,由勾股定理得:

厘米.

(3∵AD=10厘米,BF=6厘米,

∴FC=10-6=4厘米,

中,設(shè)EF=厘米,EC=厘米,

由勾股定理得:,解得:,

EF的長為5厘米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)與x軸交于點A(﹣5,0)和點B(3,0),與y軸交于點C.

(1)求該拋物線的解析式;
(2)若點E為x軸下方拋物線上的一動點,當(dāng)SABE=SABC時,求點E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在點P,使∠BAP=∠CAE?若存在,求出點P的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2x﹣2m+1=0的兩實數(shù)根之積為負(fù),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在四邊形ABCD中,∠A=90°,AB=3,AD=4,BC=12,CD=13,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達(dá)小島的北偏西45°的C處,則該船行駛的速度為海里/小時.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線,點A1坐標(biāo)為(1,0),過點A1x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按照此做法進(jìn)行下去,點A8的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,l1和l2分別是走私船和我公安快艇航行路程與時間的函數(shù)圖象,請結(jié)合圖象解決下列問題:

(1)在剛出發(fā)時,我公安快艇距走私船多少海里?

(2)計算走私船與公安艇的速度分別是多少?

(3)求出l1,l2的解析式.

(4)問6分鐘時,走私船與我公安快艇相距多少海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,點M是AC的中點,以AB為直徑作⊙O分別交AC,BM于點D,E.
(1)求證:MD=ME;
(2)填空:
①若AB=6,當(dāng)AD=2DM時,DE=
②連接OD,OE,當(dāng)∠A的度數(shù)為時,四邊形ODME是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個頂點的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4)
(1)請畫出△ABC向左平移6個單位長度后得到的△A1B1C1
(2)以點O為位似中心,將△ABC縮小為原來的 ,得到△A2B2C2 , 請在y軸右側(cè)畫出△A2B2C2 , 并求出∠A2C2B2的正弦值.

查看答案和解析>>

同步練習(xí)冊答案