【題目】如圖1,在平面直角坐標系xOy中,對于任意兩點P(x1,y1)與P2(x2,y2)的“最佳距離”,給出如下定義:
若|x1﹣x2|≥|y1﹣y2|,則點P1與點P2的“最佳距離”為|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,則點P1與點P2的“最佳距離”為|y1﹣y2|;
例如:點P1(1,2),點P2(3,5),因為|1﹣3|<|2﹣5|,所以點P1與點P2的“最佳距離”為|2﹣5|=3,也就是圖1中線段P1Q與線段P2Q長度的較大值(過點P1平行于x軸的直線與過點P2垂直于x軸的直線交于點Q).
(1)已知點A(﹣,0),B為y軸上的一個動點.
①若點A與點B的“最佳距離”為3,寫出滿足條件的點B的坐標;
②直接寫出點A與點B的“最佳距離”的最小值;
(2)如圖2,已知點C是直線y=x+3上的一個動點,點D的坐標是(0,1),求點C與點D的“最佳距離”的最小值及相應(yīng)的點C的坐標.
【答案】(1)B(0,3),(0,﹣3),;(2).
【解析】
(1) ①點A與點B的橫坐標差的絕對值為,“最佳距離”為3,因此可以A、B縱坐標的差的絕對值為3,從而求出B點坐標的兩種情況;
②根據(jù)題意得:|﹣﹣0|≥|0﹣y|,求出“最佳距離”的最小值為
(2)設(shè)點C(m,m+3),且點D的坐標是(0,1),當|m﹣0|=|m+3﹣1|=|m+2|時,點C與點D的“最佳距離”有最小值,從而求出C點坐標.
解:(1)①∵點B為y軸上的一個動點
∴設(shè)點B的坐標為(0,y)
∵|﹣﹣0|=≠3
∴|0﹣y|=3
∴y=±3
∴點B的坐標為(0,3),(0,﹣3)
②設(shè)點B的坐標為(0,y),
根據(jù)題意得:|﹣﹣0|≥|0﹣y|
∴|y﹣0|≤
∴點A與點B的“最佳距離”的最小值為
(2)∵點C是直線y=x+3上的一個動點,
∴設(shè)點C(m,m+3),且點D的坐標是(0,1),
∴當|m﹣0|=|m+3﹣1|=|m+2|時,點C與點D的“最佳距離”有最小值,
當m≤﹣時,﹣m=﹣m﹣2
解得:m=10(不合題意舍去)
當﹣<m<0時,﹣m=m+2
解得:m=﹣
當m>0時,m=m+2
解得:m=10
∴|m|=10或
∴點C與點D的“最佳距離”的最小值為,
∴點C坐標為(﹣,)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標為1.
(1)求k、b的值;
(2)請直接寫出不等式kx+b﹣3x>0的解集.
(3)若點D在y軸上,且滿足S△BCD=2S△BOC,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,O)、C(3,0),點B為拋物線頂點,直線BD為拋物線的對稱軸,點D在x軸上,連接AB、BC.
⑴如圖1,若∠ABC=60°,則點B的坐標為______________;
⑵如圖2,若∠ABC=90°,AB與y軸交于點E,連接CE.
①求這條拋物線的解析式;
②點P為第一象限拋物線上一個動點,設(shè)△PEC的面積為S,點P的橫坐標為m,求S關(guān)于m的函數(shù)關(guān)系武,并求出S的最大值;
③如圖3,連接OB,拋物線上是否存在點Q,使直線QC與直線BC所夾銳角等于∠OBD,若存在請直接寫出點Q的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD外有一點P,P在BC外側(cè),并在平行線AB與CD之間,若PA=,PB=,PC=,則PD=( 。
A.2B.C.3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某立交橋示意圖(道路寬度忽略不計),A﹣F﹣G﹣J為高架,以O為圓心的圓盤B﹣C﹣D﹣E位于高架下方,其中AB,AF,CH,DI,EJ,GJ為直行道,且AB=CH=DI=EJ,AF=GJ,彎道FG是以點O為圓心的圓上的一段。⒔粯虻纳舷赂叨炔詈雎圆挥嫞cB,C,D,E是圓盤O的四等分點.某日凌晨,有甲、乙、丙、丁四車均以10m/s的速度由A口駛?cè)肓⒔粯颍某隹隈偝,若各車到圓心O的距離y(m)與從A口進入立交后的時間x(s)的對應(yīng)關(guān)系如圖2所示,則下列說法錯誤的是( 。
A.甲車在立交橋上共行駛10s
B.從I口出立交的車比從H口出立交的車多行駛30m
C.丙、丁兩車均從J口出立交
D.從J口出立交的兩輛車在立交橋行駛的路程相差60m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了更好的開展“學(xué)校特色體育教育”,從全校八年級的各班分別隨機抽取了5名男生和5名女生,組成了一個容量為60的樣本,進行各項體育項目的測試,了解他們的身體素質(zhì)情況.下表是整理樣本數(shù)據(jù),得到的關(guān)于每個個體的測試成績的部分統(tǒng)計表、圖:某校60名學(xué)生體育測試成績頻數(shù)分布表
成績 | 劃記 | 頻數(shù) | 百分比 |
優(yōu)秀 | 正正正 | a | 30% |
良好 | 正正正正正正 | 30 | b |
合格 | 正 | 9 | 15% |
不合格 | 3 | 5% | |
合計 | 60 | 60 | 100% |
(說明:40﹣﹣﹣55分為不合格,55﹣﹣﹣70分為合格,70﹣﹣﹣85分為良好,85﹣﹣﹣100分為優(yōu)秀)請根據(jù)以上信息,解答下列問題:
(1)表中的a=_____,b=_____;
(2)請根據(jù)頻數(shù)分布表,畫出相應(yīng)的頻數(shù)分布直方圖;
(3)如果該校八年級共有150名學(xué)生,根據(jù)以上數(shù)據(jù),估計該校八年級學(xué)生身體素質(zhì)良好及以上的人數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年甲、乙兩家科技公司共向國家繳納利稅3800萬元.2019年隨著團家“減稅降費”政策的實施,兩家公司的利稅將會減輕,2019年甲公司的利稅比2018年減少15%,乙公司的利稅比2018年減少20%,預(yù)計2019兩家公司的利稅共為3000萬元,求兩家科技公司2018年的利稅各是多少?設(shè)2018年甲公司的利稅為x萬元,乙公司的利稅為y方元,根據(jù)題意列出關(guān)于x,y的方程組為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知:點A(0,0),B(,0),C(0,1)在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…,則第個等邊三角形的邊長等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心.根據(jù)準外心的定義,探究如下問題:如圖,在RtΔABC中,∠C=90°,AB=10,AC=6,如果準外心P在BC邊上,那么PC的長為 ________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com