已知Rt△ABC中,AC=3,BC= 4,過直角頂點(diǎn)CCA1AB,垂足為A1,再過A1A1C1BC, 垂足為C1,過C1C1A2AB,垂足為A2,再過A2A2C2BC,垂足為C2,…,這樣一直做下去,得到了一組線段CA1,A1C1,C1A2,…,則CA1=      ,       .
由Rt△ABC中,AC=3,BC=4,利用勾股定理得AB=5,利用平行線的性質(zhì)得出∠A1CA=∠C1A1C=∠A2C1A1=∠C2A2C1=…=∠C9A9C8,可證△C9A9C8∽△CBA,利用相似比求解
解:在Rt△ABC中,AC=3,BC=4,由勾股定理得AB=5,
∵CA1⊥AB,∠ACB=90°,
∴△A1CA∽△CBA
解得CA1=
由平行線的性質(zhì),得∠A1CA=∠C9A9C8,
∴△C9A9C8∽△CBA,

故答案為:,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(10分)為了測(cè)量學(xué)校操場(chǎng)上旗桿的高度,小明請(qǐng)同學(xué)幫忙,測(cè)量了同一時(shí)刻自己的影長(zhǎng)EC和旗桿的影長(zhǎng)BC分別為0.6m和3.6m,如圖,如果小身高CD為1.5m,請(qǐng)計(jì)算旗桿AB的高度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

為測(cè)量湖兩岸之間的距離BC,設(shè)計(jì)了如圖所示的方案,其中DE∥BC,,根據(jù)圖中數(shù)據(jù)可知湖寬BC=       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC中,AB=8,BC=7,AC=6,延長(zhǎng)邊BC到點(diǎn)P,使得△PAB與△PCA相似.則PC的長(zhǎng)是(    ).
A.7B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,,則的度數(shù)為              

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)如圖,已知一矩形ABCD,若把△ABE沿折痕BE向上翻折,A點(diǎn)恰好落在DC上,設(shè)此點(diǎn)為F,且這時(shí)AE:ED=5:3,BE=5,這個(gè)矩形的長(zhǎng)寬各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)如圖, 內(nèi)接于,的平分線交于點(diǎn),與交于點(diǎn),延長(zhǎng),與的延長(zhǎng)線交于點(diǎn),連接的中點(diǎn),連結(jié)

(1)判斷的位置關(guān)系,寫出你的結(jié)論并證明;
(2)求證:;
(3)若,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)若=,判斷代數(shù)式-+1值的符號(hào)
(2)若==,求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分9分)如圖,邊長(zhǎng)為4的正方形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A
在x軸的正半軸上,點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)D在線段BC上移動(dòng)(不與B,C重合),
連接OD,過點(diǎn)D作DE⊥OD,交邊AB于點(diǎn)E,連接OE。
(1)當(dāng)CD=1時(shí),求點(diǎn)E的坐標(biāo);
(2)如果設(shè)CD=t,梯形COEB的面積為S,那么是否存在S的最大值?若存在,請(qǐng)求出這
個(gè)最大值及此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案