一條對角線經(jīng)過另一條對角線的中點,那么這個四邊形是平行四邊形(       )

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,一個直角三角形的直角頂點P在正方形ABCD的對角線AC所在的直線上滑動,并使得一條直角邊始終經(jīng)過B點.
(1)如圖1,當直角三角形的另一條直角邊和邊CD交于Q點,
PB
PQ
=
 
;
(2)如圖2,當另一條直角邊和邊CD的延長線相交于Q點時,
PB
PQ
=
 
;
(3)如圖3或圖4,當直角頂點P運動到AC或CA的延長線上時,請你在圖3或圖4中任選一種情形,求
PB
PQ
的值,并說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,O是坐標原點,等邊三角形OAB的一個頂點為A(2,0),另一個頂點B在第一象限內.
(1)求經(jīng)過O、A、B三點的拋物線的解析式;
(2)如果一個四邊形是以它的一條對角線為對稱軸的軸對稱圖形,那么我們稱這樣的四邊形為“箏形”.點Q在(1)的拋物線上,且以O、A、B、Q為頂點的四邊形是“箏形”,求點Q的坐標;
(3)設△OAB的外接圓⊙M,試判斷(2)中的點Q與⊙M的位置關系,并通過計算說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•廊坊一模)如圖1,將一個直角三角板的直角頂點P放在正方形ABCD的對角線BD上滑動,并使其一條直角邊始終經(jīng)過點A,另一條直角邊與BC相交于點E.
(1)求證:PA=PE;
(2)若將(1)中的正方形變?yōu)榫匦,其余條件不變(如圖2),且AD=10,DC=8,求AP:PE;
(3)在(2)的條件下,當P滑動到BD的延長線上時(如圖3),請你直接寫出AP:PE的比值.

查看答案和解析>>

科目:初中數(shù)學 來源:廣東省期末題 題型:解答題

四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準等距點.如圖1,點P為四邊形ABC
D對角線AC所在直線上的一點,PD=PB,PA≠PC,則點P為四邊形ABCD的準等距點.
(1)如圖2,畫出菱形ABCD的一個準等距點.
(2)如圖3,作出四邊形ABCD的一個準等距點(尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(3)如圖4,在四邊形ABCD中,P是AC上的點,PA≠PC,延長BP交CD于點E,延長DP交BC于點F,且∠CDF=∠CBE,CE=CF.求證:點P是四邊形ABCD的準等距點.
(4)試研究四邊形的準等距點個數(shù)的情況.(說出相應四邊形的特征及此時準等距點的個數(shù),不必證明)
①當四邊形的對角線互相垂直且任何一條對角線不平分另一條對角線或者對角線互相平分且不垂直時,準等距點的個數(shù)為(    )個;
②當四邊形的對角線既不垂直,又不互相平分,且有一條對角線的中垂線經(jīng)過另一對角線的中點時,準等距點的個數(shù)為(    )個;
③當四邊形的對角線既不垂直又不互相平分,且任何一條對角線的中垂線都不經(jīng)過另一條對角線的中點時,準等距點的個數(shù)為(    )個;
④當四邊形的對角線互相垂直且至少有一條對角線平分另一條對角線時,準等距點有(    )個(注意點P不能畫在對角線的中點上).

查看答案和解析>>

科目:初中數(shù)學 來源:2013年河北省廊坊市中考數(shù)學一模試卷(解析版) 題型:解答題

如圖1,將一個直角三角板的直角頂點P放在正方形ABCD的對角線BD上滑動,并使其一條直角邊始終經(jīng)過點A,另一條直角邊與BC相交于點E.
(1)求證:PA=PE;
(2)若將(1)中的正方形變?yōu)榫匦,其余條件不變(如圖2),且AD=10,DC=8,求AP:PE;
(3)在(2)的條件下,當P滑動到BD的延長線上時(如圖3),請你直接寫出AP:PE的比值.

查看答案和解析>>

同步練習冊答案