【題目】如圖,MN是半徑為1的⊙O的直徑,點(diǎn)A在⊙O上,∠AMN=30°,BAN弧的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為( )

A.2B.C.4D.

【答案】B

【解析】

首先利用在直線L上的同側(cè)有兩個(gè)點(diǎn)A、B,在直線L上有到A、B的距離之和最短的點(diǎn)存在,可以通過(guò)軸對(duì)稱來(lái)確定,即作出其中一點(diǎn)關(guān)于直線L的對(duì)稱點(diǎn),對(duì)稱點(diǎn)與另一點(diǎn)的連線與直線L的交點(diǎn)就是所要找的點(diǎn)P的位置,然后根據(jù)弧的度數(shù)發(fā)現(xiàn)一個(gè)等腰直角三角形計(jì)算.

作點(diǎn)B關(guān)于MN的對(duì)稱點(diǎn)C,連接ACMN于點(diǎn)P,則P點(diǎn)就是所

求作的點(diǎn).
此時(shí)PA+PB最小,且等于AC的長(zhǎng).
連接OA,OC,根據(jù)題意得:
∵∠AMN=30°
∴弧AN的度數(shù)是60°,
BAN弧的中點(diǎn),
∴弧BN的度數(shù)是30°,
NOBC
∴弧BN=CN,
∴弧CN的度數(shù)是30°,
∴弧AC+AN+CN=90°
∴∠AOC=90°,
又∵OA=OC=1,
AC=
PA+PB的最小值為:,
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在中,,,點(diǎn)點(diǎn)出發(fā),沿著以每秒的速度向點(diǎn)運(yùn)動(dòng);同時(shí)點(diǎn)點(diǎn)出發(fā),沿以每秒的速度向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為

1)當(dāng)為何值時(shí),;

2)當(dāng),求的值;

3能否與相似?若能,求出的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OBOA,且OB2OA,點(diǎn)A的坐標(biāo)是(1,2)

1)求點(diǎn)B的坐標(biāo);

2)求過(guò)點(diǎn)A、O、B的拋物線的表達(dá)式;

3)連接AB,在(2)中的拋物線上是否存在點(diǎn)P,使得SABPSABO.若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,每個(gè)小正方形的邊長(zhǎng)均為1,則下列A、B、C、D四個(gè)圖中的三角形(陰影部分)與△EFG相似的是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市準(zhǔn)備進(jìn)一批每個(gè)進(jìn)價(jià)為40元的小家電,經(jīng)市場(chǎng)調(diào)查預(yù)測(cè),售價(jià)定為50元時(shí)可售出400個(gè);定價(jià)每增加1元,銷售量將減少10個(gè).

1)設(shè)每個(gè)定價(jià)增加x元,此時(shí)的銷售量是多少?(用含x的代數(shù)式表示)

2)超市若準(zhǔn)備獲得利潤(rùn)6000元,并且使進(jìn)貨量較少,則每個(gè)應(yīng)定價(jià)為多少元?

3)超市若要獲得最大利潤(rùn),則每個(gè)應(yīng)定價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長(zhǎng)CBx軸于點(diǎn)A1,作第1個(gè)正方形A1B1C1C;延長(zhǎng)C1B1x軸于點(diǎn)A2,作第2個(gè)正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2019個(gè)正方形的面積是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長(zhǎng)為12m,設(shè)AD的長(zhǎng)為m,DC的長(zhǎng)為m。

1)求之間的函數(shù)關(guān)系式;

2)根據(jù)實(shí)際情況,對(duì)于(1)式中的函數(shù)自變量能否取值為4m,若能,求出的值,若不能,請(qǐng)說(shuō)明理由;

3)若圍成矩形科技園ABCD的三邊材料總長(zhǎng)不超過(guò)26m,材料ADDC的長(zhǎng)都是整米數(shù),求出滿足條件的所有圍建方案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).三角形ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,以點(diǎn)A為圓心的弧EFBC相切于格點(diǎn)D,分別交AB,AC于點(diǎn)EF

1)直接寫出三角形ABC邊長(zhǎng)AB   ;AC   BC   

2)求圖中由線段EB,BCCF及弧FE所圍成的陰影部分的面積.(結(jié)果保留π

查看答案和解析>>

同步練習(xí)冊(cè)答案