年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省金華四中九年級(jí)畢業(yè)生學(xué)業(yè)考試模擬數(shù)學(xué)卷(帶解析) 題型:解答題
如圖1,在等腰梯形ABCO中,AB∥CO,E是AO的中點(diǎn),過(guò)點(diǎn)E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,OC在x軸正半軸上,點(diǎn)A,B在第一象限內(nèi).
(1)求點(diǎn)E的坐標(biāo)及線段AB的長(zhǎng);
(2)點(diǎn)P為線段EF上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥EF交OC于點(diǎn)M,過(guò)M作MN∥AO交折線ABC于點(diǎn)N,連結(jié)PN,設(shè)PE=x.△PMN的面積為S.
①求S關(guān)于x的函數(shù)關(guān)系式;
②△PMN的面積是否存在最大值,若不存在,請(qǐng)說(shuō)明理由.若存在,求出面積的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC.現(xiàn)在開(kāi)始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個(gè)單位的速度沿OC方向向右移動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止(如圖2).設(shè)運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)后的直角梯形為E′D′G′H′(如圖3);試探究:在運(yùn)動(dòng)過(guò)程中,等腰梯ABCO與直角梯形E′D′G′H′重合部分的面積y與時(shí)間t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012屆浙江省江山市中考一模數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖1,在等腰梯形ABCD中,AB∥CO,E是AO的中點(diǎn),過(guò)點(diǎn)E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,OC在x軸正半軸上,點(diǎn)A、B在第一象限內(nèi)。
(1) 求點(diǎn)E的坐標(biāo);
(2) 點(diǎn)P為線段EF上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥EF交OC于點(diǎn)M,過(guò)M作MN∥AO交折線ABC于點(diǎn)N,
連結(jié)PN。設(shè)PE=x.△PMN的面積為S。
① 求S關(guān)于x的函數(shù)關(guān)系式;
② △PMN的面積是否存在最大值,若不存在,請(qǐng)說(shuō)明理由。若存在,求出面積的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC)。現(xiàn)在開(kāi)始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個(gè)單位的速度沿OC方向向右移動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止(如圖2)。設(shè)運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)后的直角梯形為E′D′G′H′;探究:在運(yùn)動(dòng)過(guò)程中,等腰梯形ABCO與直角梯形E′D′G′H′重合部分的面積y與時(shí)間t的函數(shù)關(guān)系式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省江山市中考一模數(shù)學(xué)試卷(解析版) 題型:解答題
如圖1,在等腰梯形ABCD中,AB∥CO,E是AO的中點(diǎn),過(guò)點(diǎn)E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,OC在x軸正半軸上,點(diǎn)A、B在第一象限內(nèi)。
(1) 求點(diǎn)E的坐標(biāo);
(2) 點(diǎn)P為線段EF上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥EF交OC于點(diǎn)M,過(guò)M作MN∥AO交折線ABC于點(diǎn)N,
連結(jié)PN。設(shè)PE=x.△PMN的面積為S。
① 求S關(guān)于x的函數(shù)關(guān)系式;
② △PMN的面積是否存在最大值,若不存在,請(qǐng)說(shuō)明理由。若存在,求出面積的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC),F(xiàn)在開(kāi)始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個(gè)單位的速度沿OC方向向右移動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止(如圖2)。設(shè)運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)后的直角梯形為E′D′G′H′;探究:在運(yùn)動(dòng)過(guò)程中,等腰梯形ABCO與直角梯形E′D′G′H′重合部分的面積y與時(shí)間t的函數(shù)關(guān)系式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012屆浙江省九年級(jí)畢業(yè)生學(xué)業(yè)考試模擬數(shù)學(xué)卷(解析版) 題型:解答題
如圖1,在等腰梯形ABCO中,AB∥CO,E是AO的中點(diǎn),過(guò)點(diǎn)E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.現(xiàn)把梯形ABCO放置在平面直角坐標(biāo)系中,使點(diǎn)O與原點(diǎn)重合,OC在x軸正半軸上,點(diǎn)A,B在第一象限內(nèi).
(1)求點(diǎn)E的坐標(biāo)及線段AB的長(zhǎng);
(2)點(diǎn)P為線段EF上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥EF交OC于點(diǎn)M,過(guò)M作MN∥AO交折線ABC于點(diǎn)N,連結(jié)PN,設(shè)PE=x.△PMN的面積為S.
①求S關(guān)于x的函數(shù)關(guān)系式;
②△PMN的面積是否存在最大值,若不存在,請(qǐng)說(shuō)明理由.若存在,求出面積的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC.現(xiàn)在開(kāi)始操作:固定等腰梯形ABCO,將直角梯形EDGH以每秒1個(gè)單位的速度沿OC方向向右移動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止(如圖2).設(shè)運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)后的直角梯形為E′D′G′H′(如圖3);試探究:在運(yùn)動(dòng)過(guò)程中,等腰梯ABCO與直角梯形E′D′G′H′重合部分的面積y與時(shí)間t的函數(shù)關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com