【題目】如圖,已知?jiǎng)狱c(diǎn)A在函數(shù)的圖象上,AB⊥x軸于點(diǎn)B,AC⊥y軸于點(diǎn)C,延長(zhǎng)CA交以A為圓心AB長(zhǎng)為半徑的圓弧于點(diǎn)E,延長(zhǎng)BA交以A為圓心AC長(zhǎng)為半徑的圓弧于點(diǎn)F,直線EF分別交x軸、y軸于點(diǎn)M、N,當(dāng)NF=4EM時(shí),圖中陰影部分的面積等于_____.
【答案】2.5π.
【解析】
作DF⊥y軸于點(diǎn)D,EG⊥x軸于G,得到△GEM∽△DNF,于是得到==4,設(shè)GM=t,則DF=4t,然后根據(jù)△AEF∽△GME,據(jù)此即可得到關(guān)于t的方程,求得t的值,進(jìn)而求解.
解:作DF⊥y軸于點(diǎn)D,EG⊥x軸于G,
∴△GEM∽△DNF,
∵NF=4EM,
∴==4,
設(shè)GM=t,則DF=4t,
∴A(4t,),
由AC=AF,AE=AB,
∴AF=4t,AE=,EG=,
∵△AEF∽△GME,
∴AF:EG=AE:GM,
即4t:=:t,即4t2=,
∴t2=,
圖中陰影部分的面積==2π+π=2.5π,
故答案為2.5π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On均與直線l相切,設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當(dāng)直線l與x軸所成銳角為30時(shí),且r1=1時(shí),r2017=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將A(1,0)、B(0,2)、C(2,3)、D(3,1)用線段依次連接起來(lái)形成一個(gè)圖案(圖案①).將圖案①繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到圖案②;以點(diǎn)O為位似中心,位似比為1:2將圖案①在位似中心的異側(cè)進(jìn)行放大得到圖案③.
(1)在坐標(biāo)系中分別畫出圖案②和圖案③;
(2)若點(diǎn)D在圖案②中對(duì)應(yīng)的點(diǎn)記為點(diǎn)E,在圖案③中對(duì)應(yīng)的點(diǎn)記為點(diǎn)F,則S△DEF= ;
(3)若圖案①上任一點(diǎn)P(A、B除外)的坐標(biāo)為(a,b),圖案②中與之對(duì)應(yīng)的點(diǎn)記為點(diǎn)Q,圖案③中與之對(duì)應(yīng)的點(diǎn)記為點(diǎn)R,則S△PQR= .(用含有a、b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為圓外一點(diǎn),AC交⊙O于點(diǎn)D,BC2=CDCA,弦ED=弦BD,BE交AC于F.
(1)求證:BC為⊙O切線;
(2)判斷△BCF的形狀并說(shuō)明理由;
(3)已知BC=15,CD=9,求tan∠ADE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】[問(wèn)題情境]
我們知道數(shù)軸上的兩點(diǎn)A、B的距離|AB|=|xA-xB|,那么如果已知平面上兩點(diǎn)P1(x1,y1),P2(x2,y2),如何求P1,P2的距離d(P1P2)呢?
下面我們就來(lái)研究這個(gè)問(wèn)題.
問(wèn)題 一般地,已知平面上兩點(diǎn)P1(x1,y1),P2(x2,y2),如何求點(diǎn)P1和P2的距離?
答: 當(dāng)x1≠x2,y1=y2時(shí),|P1P2|=|x2-x1|;
當(dāng)x1=x2,y1≠y2時(shí),|P1P2|=|y2-y1|;
當(dāng)x1≠x2,y1≠y2時(shí),如圖,
在Rt△P1QP2中,由勾股定理知,
|P1P2|2=|P1Q|2+|QP2|2,所以d(P1,P2)=|P1P2|=.
歸納:兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離公式d(P1,P2)=|P1P2|=.
解決問(wèn)題:
(1)已知A(2,-4),B(-2,3),求d(A,B)
(2)已知點(diǎn)A(1,2),B(3,4),C(5,0),求證:△ABC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:①;②;③;④.其中正確的結(jié)論是( )
A.①②B.①③C.①③④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,經(jīng)過(guò)點(diǎn)A(1,);點(diǎn)F(0,1)在y軸上.直線y=﹣1與y軸交于點(diǎn)H.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P是(1)中圖象上的點(diǎn),過(guò)點(diǎn)P作x軸的垂線與直線y=﹣1交于點(diǎn)M,求證:FM平分∠OFP;
(3)當(dāng)△FPM是等邊三角形時(shí),求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,初三數(shù)學(xué)興趣小組同學(xué)為了測(cè)量垂直于水平地面的一座大廈AB的高度,一測(cè)量人員在大廈附近C處,測(cè)得建筑物頂端A處的仰角大小為45°,隨后沿直線BC向前走了60米后到達(dá)D處,在D處測(cè)得A處的仰角大小為30°,則大廈AB的高度約為多少米?(注:不計(jì)測(cè)量人員的身高,結(jié)果按四舍五入保留整數(shù),參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】借鑒我們已有的研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)y=|x2﹣2x﹣3|﹣2圖象和性質(zhì),探究過(guò)程如下,請(qǐng)補(bǔ)充完整.
(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對(duì)應(yīng)值列表如下:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 10 | m | ﹣2 | 1 | n | 1 | ﹣2 | 3 | 10 | … |
其中,m= ,n= ;
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出函數(shù)圖象;
(3)觀察函數(shù)圖象:
①當(dāng)方程|x2﹣2x﹣3|=b+2有且僅有兩個(gè)不相等的實(shí)數(shù)根時(shí),根據(jù)函數(shù)圖象直接寫出b的取值范圍為 .
②在該平面直角坐標(biāo)系中畫出直線y=x+2的圖象,根據(jù)圖象直接寫出該直線與函數(shù)y=|x2﹣2x﹣3|﹣2的交點(diǎn)橫坐標(biāo)為: (結(jié)果保留一位小數(shù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com