【題目】在下面的網(wǎng)格圖中,每個小正方形的邊長均為1,△ABC的三個頂點都是網(wǎng)格線的交點,已知B,C兩點的坐標分別為(-1,-1),(1,-2),將△ABC繞著點C順時針旋轉(zhuǎn)90°得到△A′B′C′.
(1)在圖中畫出△A′B′C′并寫出點A的對應(yīng)點A′坐標;
(2)求出在△ABC旋轉(zhuǎn)的過程中,點A經(jīng)過的路徑長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)若a2=16,|b|=3,且ab<0,求a+b的值;
(2)已知a、b互為相反數(shù)且a≠0,c、d互為倒數(shù),m的絕對值是5,求m2﹣(﹣1)+(a+b)﹣cd的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并回答問題.我們知道|a|的幾何意義是指數(shù)軸上表示數(shù)的點與原點的距離,那么|a-b|的幾何意義又是什么呢?我們不妨考慮一下,取特殊值時的情況.比如考慮|5-(-6)|的幾何意義,在數(shù)軸上分別標出表示-6和5的點,(如圖所示),兩點間的距離是11,而|5-(-6)|=11,因此不難看出|5-(-6)|就是數(shù)軸上表示-6和5兩點間的距離.
(1)|a-b|的幾何意義是_______;
(2)當|x-2|=2時,求出x的值.
(3)設(shè)Q=|x+6|-|x-5|,請問Q是否存在最大值,若沒有請說明理由,若有,請求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD,AB=6,AD=8,將矩形ABCD繞點A順時針旋轉(zhuǎn)θ(0°<θ<360°)得到矩形AEFG,當θ=_____°時,GC=GB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十一黃金周期間,某景點門票價格為:成人票每張80元,兒童票每張20元,甲旅行團有x名成人和y名兒童;乙旅行團的成人數(shù)是甲旅行團的2倍,兒童數(shù)是甲旅行團的.
(1)甲、乙兩個旅行團在該景點的門票費用分別為:甲 元;乙 元;(用含x、y的代數(shù)式表示)
(2)若x=10,y=6,求兩個旅行團門票費用的總和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正在建設(shè)的成都第二繞城高速全長超過220公里,串起我市二、三圈層以及周邊的廣漢、簡陽等地,總投資達290億元,用科學(xué)計數(shù)法表示290億元應(yīng)為( )
A. 290× B. 290×
C. 2.90× D. 2.90×
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市公交公司為應(yīng)對春運期間的人流高峰,計劃購買A、B兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,
(1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?
(2)若該公司預(yù)計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費用W最少?最少總費用是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題學(xué)習(xí)】小蕓在小組學(xué)習(xí)時問小娟這樣一個問題:已知α為銳角,且sin α=,求sin 2α的值.
小娟是這樣給小蕓講解的:
如圖①,在⊙O中,AB是直徑,點C在⊙O上,所以∠ACB=90°. 設(shè)∠BAC=α,則sin α==.易得∠BOC=2α.設(shè)BC=x,則AB=3x,AC=2 x.作CD⊥AB于D,求出CD=________(用含x的式子表示),可求得sin 2α==________.
【問題解決】已知,如圖②,點M,N,P為⊙O上的三點,且∠P=β,sin β=,求sin 2β的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,A1、P兩點表示的數(shù)分別為1、3,A1、A2關(guān)于O對稱,A2、A3關(guān)于點P對稱,A3、A4關(guān)于點O對稱,A4、A5關(guān)于點P對稱…依次規(guī)律,則點A15表示的數(shù)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com