【題目】如圖.在⊙O中. AE直徑,AD是弦,B為AE延長線上--點,作BC⊥AD,與AD延長線交于點C.且∠CBD=∠A.

(1)判斷直線BD與⊙0的位置關系,并證明你的結論;
(2)若∠A=30 ,OA=6,求圖中陰影部分的面積.

【答案】
(1)解:直線BD與⊙O相切. 證明如下:連接OD

. ∵OA=OD,∴∠ODA=∠A.又∵∠CBD=∠A ,∴∠CBD=∠ODA .
∵BC⊥AD,∴∠C=90°,∴∠CBD+∠CDB=90°,∴∠ODA+∠CDB=90°,∴∠ODB=90°, ∴BD⊥OD.又∵OD是半徑,∴BD是⊙O的切線
(2)解:∵∠A=30°,∴∠DOB=60°.
∵OA=6,∴OD=6.又由(1),知∠ODB=90°,∴BO=12,∴BD= ,



【解析】結論:BD是圓的切線,已知此線過圓O上點D,連接圓心O和點D(即為半徑),再證垂直即可;
根據(jù)勾股定理和扇形、三角形的面積公式計算即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為;
(2)將條形統(tǒng)計圖補充完整;
(3)該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?
(4)某天甲、乙兩名同學都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學恰好選中同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中, ,,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB過x軸上一點A(2,0),且與拋物線y=ax2相交于B、C兩點,B點坐標為(1,1).

(1)求直線AB的解析式及拋物線y=ax2的解析式;
(2)求點C的坐標;
(3)求SCOB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了貫徹落實中央提出的“厲行節(jié)約,反對浪費”的精神,某校學生自發(fā)組織了“保護水源,從我做起”的活動,學生們對我國“水資源問題”進行了調(diào)查,發(fā)現(xiàn)我國水資源越來越匱乏,可是人們的節(jié)約意識并不強.據(jù)查,僅某飲料廠每天從地下抽水達3500立方米左右.同學們采取問卷調(diào)查的方式,隨機調(diào)查了本校150名同學家庭人均月用水量和節(jié)水措施情況.以下是根據(jù)調(diào)查結果作出的部分統(tǒng)計圖:

請根據(jù)以上信息,解答以下問題:

1)補全圖①和圖②;

2)為提高人們的節(jié)水意識,請你寫出一條與圖②中已明確的節(jié)水措施不同的節(jié)水措施.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AD、AE分別是RtABC的高和中線,AB9cm,AC12cm,BC15cm,試求:

1AD的長度;

2)△ACE和△ABE的周長的差.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖中二次函數(shù)解析式為 ,則下列命題中正確的有(填序號).
;② ;③ ;④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD中,AC與BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,則∠COE=°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=BC=10,以AB為直徑作⊙O分別交AC,BC于點D,E,連接DE和DB,過點E作EF⊥AB,垂足為F,交BD于點P.

(1)求證:AD=DE;
(2)若CE=2,求線段CD的長;
(3)在(2)的條件下,求△DPE的面積.

查看答案和解析>>

同步練習冊答案