【題目】如圖所示是一個正方體的表面展開圖,請回答下列問題:

(1)與面B,C相對的面分別是   ;

2)若A=a3+a2b+3,B=a2b+a3C=a31,D=a2b+15),且相對兩個面所表示的代數(shù)式的和都相等,求E,F分別代表的代數(shù)式.

【答案】1F、E;(2F=a2bE=1

【解析】試題分析:(1)利用正方體及其表面展開圖的特點解題;

(2)相對兩個面所表示的代數(shù)式的和都相等,將各代數(shù)式代入求出EF的值.

解:(1)由圖可得:面A和面D相對,面B和面F,相對面C和面E相對,

故答案為:F、E;

(2)由題意得,A+D=B+F=C+E,

代入可得:a3+a2b+3+[﹣(a2b+15)]= a2b+a3+F,

a3+a2b+3+[﹣(a2b+15)]=a3﹣1+E,

解得:F=﹣a2b,

E=1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了做好大課間活動,計劃用400元購買10件體育用品,備選體育用品及單價如下表(單位:元)

備選體育用品

籃球

排球

羽毛球拍

單價(元)

50

40

25

(1)400元全部用來購買籃球和羽毛球拍共10件,問籃球和羽毛球拍各購買多少件?

(2)400元全部用來購買籃球、排球和羽毛球拍三種共10件,能實現(xiàn)嗎?(若能實現(xiàn)直接寫出一種答案即可,若不能請說明理由.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是小明家和學校所在地的簡單地圖,已知OA=2cm,OB=2.5cm,OP=4cm,點C為OP的中點,回答下列問題:

(1)圖中距小明家距離相同的是哪些地方?

(2)學校、商場和停車場分別在小明家的什么方位?

(3)如果學校距離小明家400m,那么商場和停車場分別距離小明家多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個三位正整數(shù)M,其各位數(shù)字均不為零且互不相等.若將M的十位數(shù)字與百位數(shù)字交換位置,得到一個新的三位數(shù)我們稱這個三位數(shù)為M友誼數(shù),168友誼數(shù)“618”;若從M的百位數(shù)字、十位數(shù)字、個位數(shù)字中任選兩個組成一個新的兩位數(shù)并將得到的所有兩位數(shù)求和,我們稱這個和為M團結數(shù)123團結數(shù)12+13+21+23+31+32=132

1求證M與其友誼數(shù)的差能被15整除;

2若一個三位正整數(shù)N,其百位數(shù)字為2,十位數(shù)字為a、個位數(shù)字為b,且各位數(shù)字互不相等(a≠0b≠0),N團結數(shù)N之差為24,N的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點A(2,1),B(﹣1,﹣3).

(1)求此一次函數(shù)的解析式;

(2)求此一次函數(shù)的圖象與x軸、y軸的交點坐標;

(3)求此一次函數(shù)的圖象與兩坐標軸所圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,過對角線BD上任意一點P,作EFBC,GHAB,下列結論:①圖中共有3個菱形;②△BEP≌△BGP;③四邊形AEPH的面積等于△ABD的面積的一半;④四邊形AEPH的周長等于四邊形GPFC的周長.其中正確的是________.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)如圖所示,某公路一側有A、B兩個送奶站,C為公路上一供奶站,CACB為供奶路線,現(xiàn)已測得AC=8km,BC=15km,AB=17km,1=30°,若有一人從C處出發(fā),沿公路邊向右行走,速度為2.5km/h,問:多長時間后這個人距B送奶站最近?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將兩塊三角板的直角頂點重合.

(1)寫出以點C為頂點的相等的角;

(2)若∠ACB=150°,求∠DCE的度數(shù);

(3)寫出∠ACB與∠DCE之間所具有的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,RtOCD的一邊OCx軸上,∠C90°,點D在第一象限,OC3,DC4,反比例函數(shù)的圖象經(jīng)過OD的中點A.

(1)求該反比例函數(shù)的表達式;

(2)若該反比例函數(shù)的圖象與RtOCD的另一邊DC交于點B,求過A、B兩點的直線的表達式.

查看答案和解析>>

同步練習冊答案