【題目】如圖,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點(diǎn)F是AB中點(diǎn),兩邊FD,F(xiàn)E分別交AC,BC于點(diǎn)D,E兩點(diǎn),當(dāng)∠DFE在△ABC內(nèi)繞頂點(diǎn)F旋轉(zhuǎn)時(shí)(點(diǎn)D不與A,C重合),給出以下個(gè)結(jié)論:①CD=BE ②四邊形CDFE不可能是正方形 ③△DFE是等腰直角三角形 ④S四邊形CDFE= S△ABC , 上述結(jié)論中始終正確的有( )
A.①②③
B.②③④
C.①③④
D.①②④
【答案】C
【解析】解:連接CF,
∵AC=BC,∠ACB=90°,點(diǎn)F是AB中點(diǎn),
∴∠A=∠B=45°,CF⊥AB,∠ACF= ∠ACB=45°,CF=AF=BF= AB,
∴∠DCF=∠B=45°,
∵∠DFE=90°,
∴∠DFC+∠CFE=∠CFE+∠EFB=90°,
∴∠DFC=∠EFB,
∴△DCF≌△EBF,
∴CD=BE,故①正確;
∴DF=EF,
∴△DFE是等腰直角三角形,故③正確;
∴S△DCF=S△BEF ,
∴S四邊形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF= S△ABC , 故④正確.
若EF⊥BC時(shí),則可得:四邊形CDFE是矩形,
∵DF=EF,
∴四邊形CDFE是正方形,故②錯(cuò)誤.
∴結(jié)論中始終正確的有①③④.
故選C.
【考點(diǎn)精析】關(guān)于本題考查的等腰直角三角形和三角形的面積,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;三角形的面積=1/2×底×高才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象的對(duì)稱軸是直線x=1,其圖象的一部分如圖所示則①abc<0;②a﹣b+c<0;③3a+c<0;④當(dāng)﹣1<x<3時(shí),y>0.其中判斷正確的有( )個(gè).
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷量的相關(guān)信息如下表:
時(shí)間x(天) | 1≤x<50 | 50≤x≤90 |
售價(jià)(元/件) | x+40 | 90 |
每天銷量(件) | 200﹣2x |
已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB邊上一點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),DE的延長線交⊙O于點(diǎn)G,DF⊥DG,且交BC于點(diǎn)F.
(1)求證:AE=BF;
(2)連接GB,EF,求證:GB∥EF;
(3)若AE=1,EB=2,求DG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與一次函數(shù)y=﹣x+4分別交y軸、x軸于A、B兩點(diǎn).
(1)求這個(gè)拋物線的解析式;
(2)設(shè)P(x,y)是拋物線在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作直線PH⊥x軸于點(diǎn)H,交直線AB于點(diǎn)M.
①求當(dāng)x取何值時(shí),PM有最大值?最大值是多少?
②當(dāng)PM取最大值時(shí),以A、P、M、N為頂點(diǎn)構(gòu)造平行四邊形,求第四個(gè)頂點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論: ①二次三項(xiàng)式ax2+bx+c的最大值為4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的兩根之和為﹣1;
④使y≤3成立的x的取值范圍是x≥0.
其中正確的個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為( )
A.2
B.2.4
C.2.6
D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com