【題目】如圖,拋物線y1=a(x+2)2+m過原點,與拋物線y2=(x﹣3)2+n交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.下列結(jié)論:①兩條拋物線的對稱軸距離為5;②x=0時,y2=5;③當(dāng)x>3時,y1﹣y2>0;④y軸是線段BC的中垂線.正確結(jié)論是________(填寫正確結(jié)論的序號).
【答案】①③④
【解析】
根據(jù)題意分別求出兩個二次函數(shù)的解析式,根據(jù)函數(shù)的對稱軸判定①;令x=0,求出y2的值,比較判定②;觀察圖象,判定③;令y=3,求出A、B、C的橫坐標(biāo),然后求出AB、AC的長,判定④.
∵拋物線y1=a(x+2)2+m與拋物線y2=(x﹣3)2+n的對稱軸分別為x=-2,x=3,
∴兩條拋物線的對稱軸距離為5,故①正確;
∵拋物線y2=(x﹣3)2+n交于點A(1,3),
∴2+n=3,即n=1;
∴y2=(x﹣3)2+1,
把x=0代入y2=(x﹣3)2+1得,y=≠5,②錯誤;
由圖象可知,當(dāng)x>3時,y1>y2,∴x>3時,y1﹣y2>0,③正確;
∵拋物線y1=a(x+2)2+m過原點和點A(1,3),
∴,
解得 ,
∴.
令y1=3,則,
解得x1=-5,x2=1,
∴AB=1-(-5)=6,
∴A(1,3),B(-5,3);
令y2=3,則(x﹣3)2+1=3,
解得x1=5,x2=1,
∴C(5,3),
∴AC=5-1=4,
∴BC=10,
∴y軸是線段BC的中垂線,故④正確.
故答案為①③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB上一點,過D點作AB垂線,交AC于E,交BC的延長線于F.
(1)∠1與∠B有什么關(guān)系?說明理由.
(2)若BC=BD,請你探索AB與FB的數(shù)量關(guān)系,并且說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點在格點上),
⑴選取其中三條線段,使得這三條線段能圍成一個直角三角形.
答:選取的三條線段為 .
⑵只變動其中兩條線段的位置,在原圖中畫出一個滿足上題的直角三角形(頂點仍在格點,并標(biāo)上必要的字母).
答:畫出的直角三角形為△ .
⑶所畫直角三角形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點E在BC邊上,AE=AB,將線段AC繞A點旋轉(zhuǎn)到AF的位置,使得∠CAF=∠BAE,連接EF,EF與AC交于點G.
(1)求證:EF=BC;
(2)若∠ABC=62°,∠ACB=29°,求∠FGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,過點D作AC的平行線交AB于點O,DE⊥AD交AB于點E.
(1)求證:點O是AE的中點;
(2)若點F是AC邊上一點,且OF=OA,連接EF,如圖2,判斷EF與AC的位置關(guān)系,并說明理由;
(3)在(2)的條件下,試探究線段AE、AF、AC之間滿足的等量關(guān)系,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“五一”勞動節(jié)期間,某商場為吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被平均分成20份),并規(guī)定:顧客每購物滿200元,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會.如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)標(biāo)有數(shù)字的區(qū)域(未標(biāo)數(shù)字的視為0),則顧客就可以分別獲得該區(qū)域相應(yīng)數(shù)字的返金券,憑返金券可以在該商場繼續(xù)購物.若顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,則每購物滿200元可享受九五折優(yōu)惠.
(1)寫出轉(zhuǎn)動一次轉(zhuǎn)盤獲得返金券的概率;
(2)轉(zhuǎn)轉(zhuǎn)盤和直接享受九五折優(yōu)惠,你認(rèn)為哪種方式對顧客更合算?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB、CD邊于點E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)求證:△ADE≌△CBF;
(3)當(dāng)四邊形BEDF是菱形時,直接寫出線段EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
求該拋物線的對稱軸和頂點坐標(biāo);
求拋物線與軸交點的坐標(biāo);
畫出拋物線的示意圖;
根據(jù)圖象回答:當(dāng)在什么范圍時,隨的增大而增大?當(dāng)在什么范圍時,隨的增大而減?
根據(jù)圖象回答:當(dāng)為何值時,;當(dāng)為何值時,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中,,點為三條角平分線的交點,于,于,于,且,,,則點到三邊、、的距離為( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com