【題目】菱形ABCD中,∠B=60°,∠MAN=60°,射線AM交直線BC于點(diǎn)E,射線AN交直線CD于點(diǎn)F,連結(jié)EF,請(qǐng)解答下列問題:
(1)如圖1,求證:EC+FC=AC;
(2)將∠MAN繞點(diǎn)A旋轉(zhuǎn),如圖2,如圖3,請(qǐng)直接寫出線段EC,F(xiàn)C,AC之間的數(shù)量關(guān)系,不需要證明;
(3)若S菱形ABCD=18 ,∠CAE=30°,則CF=
【答案】
(1)
解:如圖1所示:
∵四邊形ABCD為菱形,∠B=60°
∴AB=BC,∠ACF=∠B=60°.
又∵∠B=60°,
∴△ABC為等邊三角形.
∴AC=BC=AB,∠BAC=60°.
又∵∠MAN=60°,
∴∠BAE=∠CAF.
在△ABE和△ACF中 ,
∴△ABE≌△ACF(ASA).
∴BE=CF.
∴EC+CF=EC+BE=BC.
又∵BC=AC,
∴EC+CF=AC
(2)
解:如圖2所示:AC+CF=EC.
∵四邊形ABCD為菱形,∠B=60°
∴AB=BC,∠ACD=∠B=60°.
∴∠ACF=120°.
∵∠B=60°,AB=BC,
∴△ABC為等邊三角形.
∴AC=BC=AB,∠ABC=60°.
∴∠ABE=120°.
∴∠ABE=∠ACF.
∵∠MAN=∠BAC=60°
∴∠BAE=∠CAF.
在△ABE和△ACF中 ,
∴△ABE≌△ACF(ASA).
∴BE=CF.
∴FC+BC=BE+BC=CE.
∵BC=AC,
∴FC+AC=CE.
如圖3所示:
又∵BC=AC,
∴EC+CF=AC.
如圖3所示:CF=AC+CE.
在△ACE和△ADF中 ,
△ACE≌△ADF(ASA).
∴CE=DF.
∴CF=CD+DF=CD+CE=AC+CE,即CF=AC+CE
(3)3或12
【解析】解:(3)如圖1所示:
∵∠CAE=30°,∠CAB=60°,
∴AE平分∠CAB.
又∵AB=AC,
∴AE⊥BC,BE=CE.
∴AE= AB.
∵S菱形ABCD=18 ,
∴AB AB=18 .
∴AB=6.
∴BE=EC=3.
∴CF=3.
如圖3所示:
∵∠CAE=30°,∠BAC=60°,
∴∠BAE=90°.
又∵AB=6,∠B=60°,
∴BE=12.
∴CF=AC+CE=BC+CE=12.
綜上所述,CF=3或CF=12.
所以答案是:3或12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)P0的坐標(biāo)為(,),將線段OP0按逆時(shí)針方向旋轉(zhuǎn)45°,再將其長(zhǎng)度伸長(zhǎng)為OP0的2倍,得到線段OP1;又將線段OP1按逆時(shí)針方向旋轉(zhuǎn)45°,長(zhǎng)度伸長(zhǎng)為OP1的2倍,得到線段OP2;如此下去,得到線段OP3,OP4,…,OPn(n為正整數(shù)),則點(diǎn)P2017的坐標(biāo)為( )
A. (,) B. (0,22018) C. (,) D. (22018,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是邊長(zhǎng)為1的正方形,OC與x軸正半軸的夾角為15°,點(diǎn)B在拋物線y=ax2(a<0)的圖象上,則a的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把球放在長(zhǎng)方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=16厘米,則球的半徑為厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在長(zhǎng)方形中,cm,cm.現(xiàn)將其按下列步驟折疊:(1)將邊向邊折疊,使邊落在邊上,得到折痕,如圖②;(2)將沿折疊,與交于點(diǎn),如圖③.則所得梯形的周長(zhǎng)等于( )
A. cm B. cm
C. cm D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖表示一圓柱形輸水管的橫截面,陰影部分為有水部分,如果輸水管的半徑為5cm,水面寬AB為8cm,則水的最大深度CD為( )
A.4cm
B.3cm
C.2cm
D.1cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,C為⊙O上一點(diǎn),過點(diǎn)C作⊙O的切線,與AB的延長(zhǎng)線相交于點(diǎn)P,若∠CAB=27°,求∠P的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=BC=1,將Rt△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE,點(diǎn)B經(jīng)過的路徑為 , 則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ACB中,∠ACB=90゜,CD⊥AB于D.
(1)求證:∠ACD=∠B;
(2)若AF平分∠CAB分別交CD、BC于E、F,求證:∠CEF=∠CFE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com