【題目】如圖,已知點(diǎn)A、B分別在反比例函數(shù),的圖象上,且OAOB, 的值為 ____________

【答案】

【解析】

過點(diǎn)AAMy軸于點(diǎn)M,過點(diǎn)BBNy軸于點(diǎn)N,利用相似三角形的判定定理得出△AOM∽△OBN,再由反比例函數(shù)系數(shù)k的幾何意義得出SAOMSBON=1:2,進(jìn)而可得出結(jié)論.

解:過點(diǎn)AAMy軸于點(diǎn)M,過點(diǎn)BBNy軸于點(diǎn)N,

∴∠AMO=BNO=90°

∴∠AOM+OAM=90°,

OAOB

∴∠AOM+BON=90°,

∴∠OAM=BON,

∴△AOM∽△OBN,

∵點(diǎn)A,B分別在反比例函數(shù),的圖象上,

SAOMSBON=2:4=1:2,

AO:BO=1:,

OB:OA=

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】423日是世界讀書日,某校為了解學(xué)生課外閱讀情況,抽樣調(diào)查了部分學(xué)生每周用于課外閱讀的時(shí)間,過程如下:

數(shù)據(jù)收集:從全校隨機(jī)抽取20名學(xué)生,進(jìn)行了每周用于課外閱讀時(shí)間的調(diào)查,數(shù)據(jù)如下(單位:)

30

60

81

50

40

110

130

146

90

100

60

81

120

140

70

81

10

20

100

81

整理數(shù)據(jù):按如下分段整理樣本數(shù)據(jù)并補(bǔ)全表格:

課外閱讀時(shí)間

等級

人數(shù)

3

8

分析數(shù)據(jù):補(bǔ)全下列表格中的統(tǒng)計(jì)量:

平均數(shù)

中位數(shù)

眾數(shù)

80

1    ,    ,        ;

2)用樣本中的統(tǒng)計(jì)量估計(jì)該校學(xué)生每周用于課外閱讀時(shí)間的情況等級為    

3)如果該,F(xiàn)有學(xué)生400人,估計(jì)等級為“”的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C點(diǎn)在⊙O上,AD平分角∠BAC交⊙OD,過D作直線AC的垂線,交AC的延長線于E,連接BD,CD

1)求證:BDCD;

2)求證:直線DE是⊙O的切線;

3)若DE,AB4,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形中,對角線交于點(diǎn),,點(diǎn)是對角線上一點(diǎn)(可與,重合),以點(diǎn)為圓心,為半徑作(其中).

1)如圖1,當(dāng)點(diǎn)重合,且時(shí),過點(diǎn),分別作的切線,切點(diǎn)分別為,.求證:;

2)如圖2,當(dāng)點(diǎn)與點(diǎn)重合,且在菱形內(nèi)部時(shí)(不含邊界),求的取值范圍;

3)當(dāng)點(diǎn)的內(nèi)心時(shí),直接寫出的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】開學(xué)初期,天氣炎熱,水杯需求量大.雙福育才中學(xué)門口某超市購進(jìn)一批水杯,其中A種水杯進(jìn)價(jià)為每個(gè)15元,售價(jià)為每個(gè)25元;B種水杯進(jìn)價(jià)為每個(gè)12元,售價(jià)為每個(gè)20

1)該超市平均每天可售出60個(gè)A種水杯,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),A種水杯單價(jià)每降低1元,則平均每天的銷量可增加10個(gè).為了盡量讓學(xué)生得到更多的優(yōu)惠,某天該超市將A種水杯售價(jià)調(diào)整為每個(gè)m元,結(jié)果當(dāng)天銷售A種水杯獲利630元,求m的值.

2)該超市準(zhǔn)備花費(fèi)不超過1600元的資金,購進(jìn)A、B兩種水杯共120個(gè),其中B種水杯的數(shù)量不多于A種水杯數(shù)量的兩倍.請為該超市設(shè)計(jì)獲利最大的進(jìn)貨方案,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=kx+bx軸于點(diǎn)A(1,0) ,與雙曲線 交于點(diǎn)

1)求直線AB的解析式為____ ____________

2)若 x 軸上存在動(dòng)點(diǎn) Mm,0),過點(diǎn) M 且與 x 軸垂直的直線與直線AB交于點(diǎn)C,與雙曲線交于點(diǎn)D(C、D兩點(diǎn)不重合),當(dāng)BC >BD時(shí),寫出m的取值范圍_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的對角線、相交于點(diǎn),的平分線交于點(diǎn),交于點(diǎn).若,則____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k-1)x+k2+1=0,如果方程的兩根之和等于兩根之積,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(感知)“如圖①,,平分,作、分別交射線、、兩點(diǎn),連結(jié),求的度數(shù)”為了求解問題,某同學(xué)做了如下的分析,

“過點(diǎn)于點(diǎn),于點(diǎn),”進(jìn)而求解,則________

(拓展)如圖②,一般地,設(shè),平分,作,、分別交射線、、兩點(diǎn),連結(jié)

1)求的度數(shù).(用含的代數(shù)式表示)

2)若,,,則________

查看答案和解析>>

同步練習(xí)冊答案