函數(shù)y=,若-4≤x<-2,則( )
A.2≤y<4
B.-4≤y<-2
C.-2≤y<4
D.-4<y≤-2
【答案】分析:當(dāng)-4≤x<-2<0,在函數(shù)y=的單調(diào)遞減區(qū)間,所以將定義域倆端的數(shù)值代入函數(shù)關(guān)系式即可得出對(duì)應(yīng)自變量的函數(shù)值.即得出函數(shù)的取值范圍.
解答:解:根據(jù)題意,當(dāng)x=-4時(shí),y=-2;
當(dāng)x=-2時(shí),y=-4;
故函數(shù)值的取值范圍為-4<y≤-2;
故選D.
點(diǎn)評(píng):本題考查了結(jié)合反比例函數(shù)的性質(zhì)由自變量的取值范圍來確定函數(shù)值的取值范圍,同學(xué)們應(yīng)重點(diǎn)掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=
3
x+3
分別交x軸、y軸于B、A兩點(diǎn),拋物線L:y=ax2+bx+c的頂點(diǎn)G在x軸上,且過(0,4)和(4,4)兩點(diǎn).
(1)求拋物線L的解析式;
(2)拋物線L上是否存在這樣的點(diǎn)C,使得四邊形ABGC是以BG為底邊的梯形,若存在,請(qǐng)求出C點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)將拋物線L沿x軸平行移動(dòng)得拋物線L1,其頂點(diǎn)為P,同時(shí)將△PAB沿直線AB翻折得到△DAB,使點(diǎn)D落在拋物線L1上.試問這樣的拋物線L1是否存在,若存在,求出L1對(duì)應(yīng)的函數(shù)關(guān)系式,若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,頂點(diǎn)為D的拋物線y=x2+bx-3與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,連接BC,已知△BOC是等腰三角形.
(1)求點(diǎn)B的坐標(biāo)及拋物線y=x2+bx-3的解析式;
(2)求四邊形ACDB的面積;
(3)若點(diǎn)E(x,y)是y軸右側(cè)的拋物線上不同于點(diǎn)B的任意一點(diǎn),設(shè)以A,B,C,E為頂點(diǎn)的四邊形的面積為S.
①求S與x之間的函數(shù)關(guān)系式.
②若以A,B,C,E為頂點(diǎn)的四邊形與四邊形ACDB的面積相等,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知平面直角坐標(biāo)系xOy中,點(diǎn)A(2,m),B(-3,n)為兩動(dòng)點(diǎn),其中m>1,連接O精英家教網(wǎng)A,OB,OA⊥OB,作BC⊥x軸于C點(diǎn),AD⊥x軸于D點(diǎn).
(1)求證:mn=6;
(2)當(dāng)S△AOB=10時(shí),拋物線經(jīng)過A,B兩點(diǎn)且以y軸為對(duì)稱軸,求拋物線對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(3)在(2)的條件下,設(shè)直線AB交y軸于點(diǎn)F,過點(diǎn)F作直線l交拋物線于P,Q兩點(diǎn),問是否存在直線l,使S△POF:S△QOF=1:2?若存在,求出直線l對(duì)應(yīng)的函數(shù)關(guān)系式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形OABC中,OA∥BC,A、B兩點(diǎn)的坐標(biāo)分別為A(13,0),B(11,12).動(dòng)點(diǎn)P、Q分別從O、B兩點(diǎn)出發(fā),點(diǎn)P以每秒2個(gè)單位的速度沿x軸向終點(diǎn)A運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿BC方向運(yùn)動(dòng);當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng).線段PQ和OB相交于點(diǎn)D,過點(diǎn)D作DE∥x軸,交AB于點(diǎn)E,射線QE交x軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)P、Q運(yùn)動(dòng)時(shí)間精英家教網(wǎng)為t(單位:秒).
(1)當(dāng)t為何值時(shí),四邊形PABQ是平行四邊形.
(2)△PQF的面積是否發(fā)生變化?若變化,請(qǐng)求出△PQF的面積s關(guān)于時(shí)間t的函數(shù)關(guān)系式;若不變,請(qǐng)求出△PQF的面積.
(3)隨著P、Q兩點(diǎn)的運(yùn)動(dòng),△PQF的形狀也隨之發(fā)生了變化,試問何時(shí)會(huì)出現(xiàn)等腰△PQF?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)y=精英家教網(wǎng)圖象過點(diǎn)A(0,3)B(2,4).題目中的矩形部分是一段因墨水污染而無法辨認(rèn)的文字.
(1)根據(jù)現(xiàn)有的信息,你能否求出題中的一次函數(shù)的解析式?若能,寫出求解過程,若不能說明理由;
(2)根據(jù)關(guān)系式畫出函數(shù)圖象;
(3)小明說“本題不用求函數(shù)關(guān)系式也能畫出函數(shù)圖象”,你認(rèn)為對(duì)嗎?為什么?
(4)過點(diǎn)B能不能畫出一直線BC將ABO(O為坐標(biāo)原點(diǎn))分成面積比為1:2的兩部分?如能,可以畫出幾條,并寫出這樣的直線所對(duì)應(yīng)的函數(shù)關(guān)系式;若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案