【題目】如圖,矩形ABCD中,AB6,AD4,點EBC的中點,點FAB上,FB2,P是矩形上一動點.若點P從點F出發(fā),沿FADC的路線運動,當∠FPE30°時,FP的長為_____

【答案】484

【解析】

如圖,連接DF,AEDE,取DF的中點O,連接OA、OE.以O為圓心畫⊙OCDP3.只要證明∠EP1F=∠FP2F=∠FP3E30°,即可推出FP14,FP28,FP34解決問題.

如圖,連接DFAE,DE,取DF的中點O,連接OAOE.以O為圓心畫⊙OCDP3

∵四邊形ABCD是矩形,

∴∠BAD=∠B90°,

BF2,BE2,AF4,AD4,

tanFEBtanADF,

∴∠ADF=∠FEB30°,

易知EFOFOD4,

∴△OEF是等邊三角形,

∴∠EP1F=∠FP2F=∠FP3E30°,

FP14FP28,FP34

故答案為484

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了你最喜歡的溝通方式調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了_____名學生,最喜歡用電話溝通的所對應扇形的圓心角是____°;

(2)將條形統(tǒng)計圖補充完整;

(3)運用這次的調查結果估計1200名學生中最喜歡用QQ進行溝通的學生有多少名?

(4)甲、乙兩名同學從微信,QQ,電話三種溝通方式中隨機選了一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲乙兩名同學恰好選中同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D的中點,作DEAC,交AB的延長線于點F,連接DA

(1)求證:EF為半圓O的切線;

(2)若DADF=6,求陰影區(qū)域的面積.(結果保留根號和π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用尺規(guī)在一個平行四邊形內作菱形ABCD,下列作法中錯誤的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點經(jīng)過旗桿頂點恰好看到矮建筑物的墻角C點,且俯角α60°,又從A點測得D點的俯角β30°,若旗桿底部G點為BC的中點,求矮建筑物的高CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線C1y=﹣(x+m2+m2m0),拋物線C2y=(xn2+n2n0),稱拋物線C1C2互為派對拋物線,例如拋物線C1y=﹣(x+12+1與拋物線C2y=(x2+2是派對拋物線,已知派對拋物線C1,C2的頂點分別為A,B,拋物線C1的對稱軸交拋物線C2C,拋物線C2的對稱軸交拋物線C1D

1)已知拋物線①y=﹣x22x②y=(x32+3,③y=(x2+2④yx2x+,則拋物線①②③④中互為派對拋物線的是   (請在橫線上填寫拋物線的數(shù)字序號);

2)如圖1,當m1,n2時,證明ACBD;

3)如圖2,連接AB,CD交于點F,延長BAx軸的負半軸于點E,記BDx軸于G,CDx軸于點H,∠BEO=∠BDC

求證:四邊形ACBD是菱形;

若已知拋物線C2y=(x22+4,請求出m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線x軸交于點A、B(點A位于點B左側),與y軸交于點C,CD∥x軸交拋物線于點D,M為拋物線的頂點.

(1)求點A、B、C的坐標;

(2)設動點N(-2,n),求使MN+BN的值最小時n的值;

(3)P是拋物線上位于x軸上方的一點,請?zhí)骄浚菏欠翊嬖邳cP,使以P、A、B為頂點的三角形與△ABD相似?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,AB=8,點P在邊CD上,tanPBC=,點Q是在射線BP上的一個動點,過點QAB的平行線交射線AD于點M,點R在射線AD上,使RQ始終與直線BP垂直.

1)如圖1,當點R與點D重合時,求PQ的長;

2)如圖2,試探索: 的比值是否隨點Q的運動而發(fā)生變化?若有變化,請說明你的理由;若沒有變化,請求出它的比值;

3)如圖3,若點Q在線段BP上,設PQ=x,RM=y,求y關于x的函數(shù)關系式,并寫出它的定義域.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是等腰直角三角形,ABAC,D為平面內的任意一點,且滿足CDAC,若△ADB是以AD為腰的等腰三角形,則∠CDB的度數(shù)為_____

查看答案和解析>>

同步練習冊答案