【題目】如圖1,在平面直角坐標(biāo)系中,直線y=﹣x+bx軸、y軸相交于A、B兩點(diǎn),動(dòng)點(diǎn)Cm0)在線段OA上,將線段CB繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到CD,此時(shí)點(diǎn)D恰好落在直線AB上,過點(diǎn)DDEx軸于點(diǎn)E

1)求mb的數(shù)量關(guān)系;

2)當(dāng)m1時(shí),如圖2,將BCD沿x軸正方向平移得BCD,當(dāng)直線BC經(jīng)過點(diǎn)D時(shí),求點(diǎn)B的坐標(biāo)及BCD平移的距離;

3)在(2)的條件下,直線AB上是否存在一點(diǎn)P,以PC、D為頂點(diǎn)的三角形是等腰直角三角形?若存在,寫出滿足條件的P點(diǎn)坐標(biāo);若不存在,請說明理由.

【答案】1b=3m;(2個(gè)單位長度;(3P(0,3)或(22

【解析】

1)易證△BOC≌△CED,可得BO=CE=b,DE=OC=m,可得點(diǎn)D坐標(biāo),代入解析式可求mb的數(shù)量關(guān)系;
2)首先求出點(diǎn)D的坐標(biāo),再求出直線B′C′的解析式,求出點(diǎn)C′的坐標(biāo)即可解決問題;
3)分兩種情況討論,由等腰直角三角形的性質(zhì)可求點(diǎn)P坐標(biāo).

解:(1)直線y=﹣x+b中,x0時(shí),yb,

所以,B0b),又Cm,0),

所以,OBb,OCm,

∴點(diǎn)

2)∵m=1,

b=3,點(diǎn)C1,0),點(diǎn)D4,1

∴直線AB解析式為:

設(shè)直線BC解析式為:y=ax+3,且過(1,0

0=a+3

a=-3

∴直線BC的解析式為y=-3x+3,

設(shè)直線B′C′的解析式為y=-3x+c,把D4,1)代入得到c=13,

∴直線B′C′的解析式為y=-3x+13,

當(dāng)y=3時(shí),

當(dāng)y=0時(shí),

∴△BCD平移的距離是個(gè)單位.
3)當(dāng)∠PCD=90°PC=CD時(shí),點(diǎn)P與點(diǎn)B重合,
∴點(diǎn)P0,3
如圖,當(dāng)∠CPD=90°,PC=PD時(shí),

BC=CD,∠BCD=90°,∠CPD=90°
BP=PD
∴點(diǎn)PBD的中點(diǎn),且點(diǎn)B0,3),點(diǎn)D41
∴點(diǎn)P2,2
綜上所述,點(diǎn)P為(03)或(2,2)時(shí),以P、CD為頂點(diǎn)的三角形是等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在中,,于點(diǎn),分別交于點(diǎn)、點(diǎn),連接,若.

1)若,求的面積.

2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示

該商場計(jì)劃購進(jìn)兩種手機(jī)若干部,共需155萬元,預(yù)計(jì)全部銷售后可獲毛利潤共21萬元

(毛利潤=(售價(jià)﹣進(jìn)價(jià))×銷售量)

(1)該商場計(jì)劃購進(jìn)甲、乙兩種手機(jī)各多少部?

(2) 通過市場調(diào)研,該商場決定在原計(jì)劃的基礎(chǔ)上,減少甲種手機(jī)的購進(jìn)數(shù)量,增加乙種手機(jī)的購進(jìn)數(shù)量已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過16萬元,該商場怎樣進(jìn)貨,使全部銷售后獲得的毛利潤最大?并求出最大毛

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,∠C90°,∠B30°,ADABC的角平分線.

1)求證:BD2CD;

2)若CD2,求ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初二年級教師對試卷講評課中學(xué)生參與的深度與廣度進(jìn)行評價(jià)調(diào)查,其評價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評價(jià)組隨機(jī)抽取了若干名初二學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請根據(jù)圖中所給信息解答下列問題:

(1)在這次評價(jià)中,一共抽查了 名學(xué)生;

(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;

(3)請將頻數(shù)分布直方圖補(bǔ)充完整;

(4)如果全市有6000名初二學(xué)生,那么在試卷評講課中,“獨(dú)立思考”的初二學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“單詞的記憶效率”是指復(fù)習(xí)一定量的單詞,一周后能正確默寫出的單詞個(gè)數(shù)與復(fù)習(xí)的單詞個(gè)數(shù)的比值.右圖描述了某次單詞復(fù)習(xí)中四位同學(xué)的單詞記憶效率與復(fù)習(xí)的單詞個(gè)數(shù)的情況,則這四位同學(xué)在這次單詞復(fù)習(xí)中正確默寫出的單詞個(gè)數(shù)最多的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“作以已知線段為斜邊的等腰直角三角形”的尺規(guī)作圖過程.

已知:線段

求作:以為斜邊的一個(gè)等腰直角三角形

作法:如圖,

(1)分別以點(diǎn)和點(diǎn)為圓心,大于的長為半徑作弧,兩弧相交于,兩點(diǎn);

(2)作直線,交于點(diǎn);

(3)以為圓心,的長為半徑作圓,交直線于點(diǎn)

(4)連接

即為所求作的三角形.

請回答:在上面的作圖過程中,①是直角三角形的依據(jù)是________;②是等腰三角形的依據(jù)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的軌道上有兩個(gè)點(diǎn)甲與乙,開始時(shí)甲在A處,乙在C處,它們沿著正方形軌道順時(shí)針同時(shí)出發(fā),甲的速度為每秒1 cm,乙的速度為每秒5 cm,已知正方形軌道ABCD的邊長為2 cm,則乙在第2 020次追上甲時(shí)的位置在(  )

A.ABB.BC

C.CDD.AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中既是軸對稱圖形,又是中心對稱圖形的是(

A. (A) B. (B) C. (C) D. (D)

查看答案和解析>>

同步練習(xí)冊答案