【題目】如圖,△ABC中,D,E分別是AC,AB上的點(diǎn),BD與CE交于點(diǎn)O.給出下列三個(gè)條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個(gè)條件中,哪兩個(gè)條件可判定△ABC是等腰三角形(用序號(hào)寫出一種情形):_______.
【答案】①③或②③
【解析】
已知①③條件,先證明△BEO≌△CDO再證明∠ABC=∠ACB最后得到△ABC是等腰三角形;已知②③條件可證明△BEO≌△CDO,再證明△ABC是等腰三角形.
①③或②③.
由①③證明△ABC是等腰三角形.
在△BEO和△CDO中,
∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD.
∴△BEO≌△CDO,
∴BO=CO,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,
∴AB=AC.
因此△ABC是等腰三角形.
由②③證明△ABC是等腰三角形.
在△BEO和△CDO中,
∵∠BEO=∠CDO,BE=CD,∠EOB=∠DOC,
∴△BEO≌△CDO,
∴BO=CO,
∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,AB=AC.
∴△ABC是等腰三角形.
故答案為:①③或②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC , AD平分∠BAC , DE∥AC交AB于E , 則S△EBD:S△ABC=( )
A.1:2
B.1:4
C.1:3
D.2:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知△ABC是等邊三角形,D、E、F分別是AB、AC、BC邊的中點(diǎn),M是直線BC上的任意一點(diǎn),在射線EF上截取EN,使EN=FM,連接DM、MN、DN.
(1)如圖①,當(dāng)點(diǎn)M在點(diǎn)B左側(cè)時(shí),請(qǐng)你按已知要求補(bǔ)全圖形,并判斷△DMN是怎樣的特殊三角形(不要求證明);
(2)請(qǐng)借助圖②解答:當(dāng)點(diǎn)M在線段BF上(與點(diǎn)B、F不重合),其它條件不變時(shí),(1)中的結(jié)論是否依然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
(3)請(qǐng)借助圖③解答:當(dāng)點(diǎn)M在射線FC上(與點(diǎn)F不重合),其它條件不變時(shí),(1)中的結(jié)論是否仍然成立?畫出圖形,不要求證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線y=x2﹣4x+3向上平移至頂點(diǎn)落在x軸上,如圖所示,則兩條拋物線、對(duì)稱軸和y軸圍成的圖形的面積S(圖中陰影部分)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)(2,0)和(﹣3.5,0),頂點(diǎn)為(﹣1,4),根據(jù)圖象直接寫出下列答案.
(1)方程ax2+bx+c=0的兩個(gè)根;
(2)不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c=k有兩個(gè)不相等實(shí)根,則k的取值范圍是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CN是等邊△的外角內(nèi)部的一條射線,點(diǎn)A關(guān)于CN的對(duì)稱點(diǎn)為D,連接AD,BD,CD,其中AD,BD分別交射線CN于點(diǎn)E,P.
(1)依題意補(bǔ)全圖形;
(2)若,求的大。ㄓ煤的式子表示);
(3)用等式表示線段, 與之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過(guò)A(﹣4,0),B(0,﹣4),C(2,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S. 求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=﹣x上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論: ①b2>4ac;
②abc>0;
③2a﹣b=0;
④8a+c<0;
⑤9a+3b+c<0.
其中結(jié)論正確的是 . (填正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E為CD上一點(diǎn),F(xiàn)為BC延長(zhǎng)線上一點(diǎn),CE=CF.
(1)△DCF可以看做是△BCE繞點(diǎn)C旋轉(zhuǎn)某個(gè)角度得到的嗎?說(shuō)明理由.
(2)若∠CEB=60°,求∠EFD的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com