【題目】如圖,已知正方形ABCD的邊長(zhǎng)是4,點(diǎn)EAB邊上一動(dòng)點(diǎn),連接CE,過(guò)點(diǎn)BBGCE于點(diǎn)G,點(diǎn)PAB邊上另一動(dòng)點(diǎn),則PD+PG的最小值為_____

【答案】2-2

【解析】DC關(guān)于AB的對(duì)稱(chēng)點(diǎn)D′C′,以BC中的O為圓心作半圓O,連D′O分別交AB及半圓OP、G.將PD+PG轉(zhuǎn)化為D′G找到最小值.

取點(diǎn)D關(guān)于直線(xiàn)AB的對(duì)稱(chēng)點(diǎn)D′,以BC中點(diǎn)O為圓心,OB為半徑畫(huà)半圓,

連接OD′AB于點(diǎn)P,交半圓O于點(diǎn)G,連BG,連CG并延長(zhǎng)交AB于點(diǎn)E,

由以上作圖可知,BGECG,

PD+PG=PD′+PG=D′G,

由兩點(diǎn)之間線(xiàn)段最短可知,此時(shí)PD+PG最小,

D′C=4,OC′=6,

D′O=,

D′G=-2,

PD+PG的最小值為-2,

故答案為:-2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,ACCBFAB邊上的中點(diǎn),點(diǎn)DE分別在AC、BC邊上運(yùn)動(dòng),且始終保持ADCE.連接DEDF、EF

(1)求證:△ADF≌△CEF

(2)試證明△DFE是等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程有唯一實(shí)數(shù)解,且反比例函數(shù)的圖象在每個(gè)象限內(nèi)的增大而增大,那么反比例函數(shù)的關(guān)系式為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCO中,AO=3,tan∠ACB=,以O(shè)為坐標(biāo)原點(diǎn),OC為軸,OA為軸建立平面直角坐標(biāo)系。設(shè)D,E分別是線(xiàn)段AC,OC上的動(dòng)點(diǎn),它們同時(shí)出發(fā),點(diǎn)D以每秒3個(gè)單位的速度從點(diǎn)A向點(diǎn)C運(yùn)動(dòng),點(diǎn)E以每秒1個(gè)單位的速度從點(diǎn)C向點(diǎn)O運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒。

(1)求直線(xiàn)AC的解析式;

(2)用含的代數(shù)式表示點(diǎn)D的坐標(biāo);

(3)當(dāng)為何值時(shí),△ODE為直角三角形?

(4)在什么條件下,以Rt△ODE的三個(gè)頂點(diǎn)能確定一條對(duì)稱(chēng)軸平行于軸的拋物線(xiàn)?并請(qǐng)選擇一種情況,求出所確定拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABCA逆時(shí)針?lè)较蛐D(zhuǎn)40°得到△ADE,點(diǎn)B經(jīng)過(guò)的路徑為弧BD,是圖中陰影部分的面積為(  )

A. π﹣6 B. π C. π﹣3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答下列應(yīng)用題:

⑴某房間的面積為17.6m2,房間地面恰好由110塊相同的正方形地磚鋪成,每塊地磚的邊長(zhǎng)是多少?

⑵已知第一個(gè)正方體水箱的棱長(zhǎng)是60cm,第二個(gè)正方體水箱的體積比第一個(gè)水箱的體積的3倍還多81000 cm3,則第二個(gè)水箱需要鐵皮多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(觀察)

,,……,,,,……,,,.

(發(fā)現(xiàn))

根據(jù)你的閱讀回答問(wèn)題:

(1)上述內(nèi)容中,兩數(shù)相乘,積的最大值為______

(2)設(shè)參與上述運(yùn)算的第一個(gè)因數(shù)為,第二個(gè)因數(shù)為,用等式表示的數(shù)量關(guān)系是____.

(類(lèi)比)

觀察下列兩數(shù)的積:1×49,2×48,3×47,4×46,……m×n,……46×4,47×348×2,49×1

猜想的最大值為_______,并用你學(xué)過(guò)的知識(shí)加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(背景介紹)勾股定理是幾何學(xué)中的明珠,充滿(mǎn)著魅力.千百年來(lái),人們對(duì)它的證明趨之若騖,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛(ài)好者.向常春在1994年構(gòu)造發(fā)現(xiàn)了一個(gè)新的證法.

(小試牛刀)把兩個(gè)全等的直角三角形如圖1放置,其三邊長(zhǎng)分別為ab、c.顯然,∠DAB=B=90°,ACDE.請(qǐng)用ab、c分別表示出梯形ABCD、四邊形AECD、EBC的面積,再探究這三個(gè)圖形面積之間的關(guān)系,可得到勾股定理:

S梯形ABCD=

SEBC= ,

S四邊形AECD= ,

則它們滿(mǎn)足的關(guān)系式為 ,經(jīng)化簡(jiǎn),可得到勾股定理.

(知識(shí)運(yùn)用)(1)如圖2,鐵路上A、B兩點(diǎn)(看作直線(xiàn)上的兩點(diǎn))相距40千米,C、D為兩個(gè)村莊(看作兩個(gè)點(diǎn)),ADAB,BCAB,垂足分別為A、B,AD=25千米,BC=16千米,則兩個(gè)村莊的距離為 千米(直接填空);

2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一個(gè)供應(yīng)站P,使得PC=PD,請(qǐng)用尺規(guī)作圖在圖2中作出P點(diǎn)的位置并求出AP的距離.

(知識(shí)遷移)借助上面的思考過(guò)程與幾何模型,求代數(shù)式最小值(0x16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩直線(xiàn)l1ykx2b+1l2y=(1kx+b1交于x軸上一點(diǎn)A,與y軸分別交于點(diǎn)B、C,若A的橫坐標(biāo)為2.

1)求這兩條直線(xiàn)的解析式;

2)求ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案