【題目】如圖,已知ABO的直徑,ADO于點(diǎn)A點(diǎn)C是弧EB的中點(diǎn),則下列結(jié)論

OCAEECBC;③∠DAEABE;ACOE,其中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】C

【解析】試題分析:由C的中點(diǎn),利用垂徑定理的逆定理得出OCBE,由AB為圓的直徑,利用直徑所對(duì)的圓周角為直角得到AEBE,即可確定出OCAE,故A正確;

C的中點(diǎn),即,利用等弧對(duì)等弦,得到BC=EC,故B正確;

AD為圓的切線,得到AD⊥OA,進(jìn)而確定出一對(duì)角互余,再由直角三角形ABE中兩銳角互余,利用同角的余角相等,得到∠DAE=∠ABE,故C正確;

AC不一定垂直于OE,故D錯(cuò)誤.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,BM是∠ABC的平分線,交CD于點(diǎn)M,且DM2,平行四邊形ABCD的周長(zhǎng)是14,則BC的長(zhǎng)等于( 。

A. 2B. 2.5C. 3D. 3.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)銷售一批小家電,平均每天可售出20臺(tái),每臺(tái)盈利40元.為了去庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),在一定范圍內(nèi),小家電的單價(jià)每降5元,商場(chǎng)平均每天可多售出10臺(tái).

1)若將這批小家電的單價(jià)降低x元,則每天的銷售量是______臺(tái)(用含x的代數(shù)式表示);

2)如果商場(chǎng)通過銷售這批小家電每天要盈利1250元,那么單價(jià)應(yīng)降多少元?

3)若這批小家電的單價(jià)有三種降價(jià)方式:降價(jià)10元、降價(jià)20元、降價(jià)30元,如果你是商場(chǎng)經(jīng)理,你準(zhǔn)備采取哪種降價(jià)方式?說說理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“中華人民共和國(guó)道路交通管理?xiàng)l例”規(guī)定:小汽車在城街路上行駛速度不得超過70千米小時(shí),如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路面對(duì)車速檢測(cè)儀A的正前方60米處的C點(diǎn),過了5秒后,測(cè)得小汽車所在的B點(diǎn)與車速檢測(cè)儀A之間的距離為100米.

BC間的距離;這輛小汽車超速了嗎?請(qǐng)說明理由.

【答案】這輛小汽車沒有超速.

【解析】

(1)根據(jù)勾股定理求出BC的長(zhǎng);
(2)直接求出小汽車的時(shí)速,進(jìn)行比較得出答案.

(1)RtABC中,AC60 m,

AB100 m,且AB為斜邊,根據(jù)勾股定理,得BC80 m.

(2)這輛小汽車沒有超速.

理由:∵80÷516(m/s)

16 m/s57.6 km/h,57.6<70,

∴這輛小汽車沒有超速.

【點(diǎn)睛】

考查勾股定理的應(yīng)用,熟練掌握勾股定理是解題的關(guān)鍵.

型】解答
結(jié)束】
19

【題目】已知:如圖,線段ACBD相交于點(diǎn)G,連接AB,CDECD上一點(diǎn),FDG上一點(diǎn),,且

求證:,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:基本不等式a0,b0),當(dāng)且僅當(dāng)ab時(shí),等號(hào)成立.其中我們把叫做正數(shù)a、b的算術(shù)平均數(shù),叫做正數(shù)ab的幾何平均數(shù),它是解決最大(。┲祮栴}的有力工具.

例如:在x0的條件下,當(dāng)x為何值時(shí),x+有最小值,最小值是多少?

解:∵x0,0即是x+2

x+2

當(dāng)且僅當(dāng)xx1時(shí),x+有最小值,最小值為2

請(qǐng)根據(jù)閱讀材料解答下列問題

1)若x0,函數(shù)y2x+,當(dāng)x為何值時(shí),函數(shù)有最小值,并求出其最小值.

2)當(dāng)x0時(shí),式子x2+1+2成立嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2bxc圖象的一部分,圖象過點(diǎn)A(-30),對(duì)稱軸為直線x=-1,給出四個(gè)結(jié)論b24ac;2ab0abc0;若點(diǎn)B(-y1),C(-,y2為函數(shù)圖象上的兩點(diǎn),y1y2其中正確結(jié)論是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國(guó)古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積

B.最大正方形的面積

C.較小兩個(gè)正方形重疊部分的面積

D.最大正方形與直角三角形的面積和

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本

1求出每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

2求出銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?

3如果該企業(yè)要使每天的銷售利潤(rùn)不低于4000元,且每天的總成本不超過7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蘭:“小紅,你上周買的筆和筆記本的價(jià)格是多少。俊毙〖t:“哦,…,我忘了!只記得先后買了兩次,第一次買了 5 支筆和 10 本筆記本共花了 42 元錢,第二次買了 10 文筆和 5 本筆記本共花了 30 元錢.”請(qǐng)根據(jù)小紅與小蘭的對(duì)話,求得小紅所買的筆和筆 記本的價(jià)格分別是( )

A.0.8 元/支,2.6 元/本B.0.8 元/支,3.6 元/本

C.1.2 元/支,2.6 元/本D.1.2 元/支,3.6 元/本

查看答案和解析>>

同步練習(xí)冊(cè)答案