精英家教網 > 初中數學 > 題目詳情

如下圖,四邊形ABCD是矩形,F是AD上一點,E是CB延長線上一點,且四邊形AECF是等腰梯形,下列結論中不一定成立的是

[  ]
A.

AEFC

B.

ADBC

C.AEB=∠CFD

D.

BEAF

練習冊系列答案
相關習題

科目:初中數學 來源:同步題 題型:解答題

如下圖,在△ABC中,AB=AC,D是BC的中點,DE⊥AB,DF⊥AC,垂足分別是BC的中點,E,F。
(1)試說明:DE=DF;
(2)只添加一個條件,使四邊形EDFA是正方形,請你至少寫出兩種不同的添加方法。(不另外添加輔助線,無需證明)

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如下圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E.

(1)求證:四邊形ADCE為矩形;

(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如下圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,

(1)求證:四邊形ADCE為矩形;

(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如下圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,

(1)求證:四邊形ADCE為矩形;

(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

如下圖,在△ABC中AB=AC,D是BC的中點,DE⊥AB,DF⊥AC,垂足分別為E、F,

  (1)求證:△BDE≌△CDF;

(2)當∠A=90°時,四邊形AEDF是什么四邊形?請證明你的結論.

查看答案和解析>>

同步練習冊答案