【題目】如圖,在ABC中,∠ACB=90°,以點A為圓心,AC的長為半徑作⊙A,交AB于點D,交CA的延長線于點E.過點E作EF∥AB,交⊙A于點F,連接AF,BF,DF.
(1)求證:BF是⊙A的切線;
(2)填空:
①當(dāng)四邊形ADFE是周長為20的菱形時,BF= ;
②當(dāng)= 時,四邊形ACBF是正方形.
【答案】(1)見解析;(2)①5;②
【解析】
(1)證明△ABC≌△ABF(SAS),則∠AFB=∠ACB=90°,即可求解;
(2)①當(dāng)四邊形ADFE是周長為20的菱形時,證明△ADE為等邊三角形,則BF=AFtan∠FAB=5;
②當(dāng)四邊形ACBF是正方形,則AE=AC=BC,在等腰直角△ABC中,則AB=AC=AE,即可求解.
解:(1)∵EF∥AB,
∴∠CAB=∠CEF,∠FAB=∠AFE,
∵BE=AF,
∴∠AEF=∠AFE,
∴∠CAB=∠FAB,
而AC=AF,AB=AB,
∴△ABC≌△ABF(SAS),
∴∠AFB=∠ACB=90°,
∴BF是⊙A的切線;
(2)①當(dāng)四邊形ADFE是周長為20的菱形時,
則AE∥FD,且菱形邊長為5,
∴∠EFA=∠DFA=∠FAB=∠ADF,
∴△ADE為等邊三角形,
∴∠FAB=60°,
在Rt△FAB中,BF=AFtan∠FAB=5,
故答案為:5;
②∵四邊形ACBF是正方形,
∴AC=BC,則AE=AC,
∴AE=AC=BC,
在等腰直角△ABC中,
則AB=AC=AE,
故,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品的出廠價為50元,成本為25元.由于在生產(chǎn)過程中,平均每生產(chǎn)1件產(chǎn)品,有污水排出,所以為了凈化環(huán)境,工廠設(shè)計兩種方案對污水進(jìn)行處理,并準(zhǔn)備實施.
方案甲:工廠將污水排到污水廠統(tǒng)一處理,每處理需付14元的排污費;
方案乙:工廠將污水進(jìn)行凈化處理后再排出,每處理污水所用原料費為2元,且每月凈化設(shè)備的損耗費為30000元.設(shè)工廠每月生產(chǎn)x件產(chǎn)品(x為正整數(shù),).
(1)根據(jù)題意填寫下表:
每月生產(chǎn)產(chǎn)品的數(shù)量/件 | 3500 | 4500 | 5500 | … |
方案甲處理污水的費用/元 | 31500 | … | ||
方案乙處理污水的費用/元 | 34500 | … |
(2)設(shè)工廠按方案甲處理污水時每月獲得的利潤為元,按方案乙處理污水時每月獲得的利潤為元,分別求,關(guān)于x的函數(shù)解析式;
(3)根據(jù)題意填空:
①若該工廠按方案甲處理污水時每月獲得的利潤和按方案乙處理污水時每月獲得利潤相同,則該工廠每月生產(chǎn)產(chǎn)品的數(shù)量為_______件;
②若該工廠每月生產(chǎn)產(chǎn)品的數(shù)量為7500件時,則該工廠選用方案甲、方案乙中的方案_______處理污水時所獲得的利潤多;
③若該工廠每月獲得的利潤為81000元,則該工廠選用方案甲、方案乙中的方案________處理污水時生產(chǎn)產(chǎn)品的數(shù)量少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是半圓的直徑,.射線為半圓的切線.在上取一點,連接交半圓于點,連接.過點作的垂線,垂足為點,與相交于點.過點作半圓的切線,切點為,與相交于點.
(1)求證:∽;
(2)當(dāng)與的面積相等時,求的長;
(3)求證:當(dāng)在上移動時(點除外),點始終是線段的中點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3(a≠0)與x軸交于點A(﹣2,0)、B(4,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點Q從B點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達(dá)終點時,另一個點也停止運動,當(dāng)△PBQ存在時,求運動多少秒使△PBQ的面積最大,最大面積是多少?
(3)當(dāng)△PBQ的面積最大時,在BC下方的拋物線上存在點K,使S△CBK:S△PBQ=5:2,求K點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,ABC是等邊三角形,點D,E分別在邊BC,AC上,若∠ADE=60°,則AB,CE,BD,DC之間的數(shù)量關(guān)系是 .
(2)拓展探究
如圖2,ABC是等腰三角形,AB=AC,∠B=α,點D,E分別在邊BC,AC上.若∠ADE=α,則(1)中的結(jié)論是否仍然成立?請說明理由.
(3)解決問題
如圖3,在ABC中,∠B=30°,AB=AC=4cm,點P從點A出發(fā),以1cm/s的速度沿A→B方向勾速運動,同時點M從點B出發(fā),以cm/s的速度沿B→C方向勻速運動,當(dāng)其中一個點運動至終點時,另一個點隨之停止運動,連接PM,在PM右側(cè)作∠PMG=30°,該角的另一邊交射線CA于點G,連接PC.設(shè)運動時間為t(s),當(dāng)△APG為等腰三角形時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)為了加大“退耕還林”的力度,出臺了一系列的激勵措施:在“退耕還林”過程中,每一年的林地面積達(dá)到10畝且每年的林地面積在增加的農(nóng)戶,當(dāng)年都可得生活補貼費2000元,且每超過10畝的部分還給予獎勵每畝a元,在林間還有套種其他農(nóng)作物,平均每畝還有b元的收入.
下表是某農(nóng)戶在頭兩年通過“退耕還林”每年獲得的總收入情況:
(注:年總收入=生活補貼量+政府獎勵量+種農(nóng)作物收入)
(1)試根據(jù)以上提供的資料確定a、b的值.
(2)從2003年起,如果該農(nóng)戶每年新增林地的畝數(shù)比前一年按相同的增長率增長,那么2005年該農(nóng)戶獲得的總收入達(dá)到多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC三個頂點坐標(biāo)分別為A(-2,4),B(-2,1),C(-5,2).
(1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)將△A1B1C1的三個頂點的橫坐標(biāo)與縱坐標(biāo)同時乘-2,得到對應(yīng)的點A2,B2,C2,請畫出△A2B2C2;
(3)△A1B1C1與△A2B2C2面積之比為 (不寫解答過程,直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)和在第一象限內(nèi)的圖象如圖所示,點P是的圖象上一動點,作PC⊥x軸于點C,交的圖象于點A,作PD⊥y軸于點D,交的圖象于點B,給出如下結(jié)論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積大小不會發(fā)生變化;④PA=3AC,其中正確的結(jié)論序號是( )
A.①③B.②③④C.①③④D.①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com