【題目】已知AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系________;
(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
【答案】(1)∠A+∠C=90°;(2)見解析;(3)105°.
【解析】試題分析:(1)根據(jù)平行線的性質(zhì)以及直角三角形的性質(zhì)進行證明即可; (2)先過點B作BG∥DM,根據(jù)同角的余角相等,得出∠ABD=∠CBG,再根據(jù)平行線的性質(zhì),得出∠C=∠CBG,即可得結(jié)論;(3)先過點B作BG∥DM,根據(jù)角平分線的定義,得出∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,根據(jù)由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根據(jù)AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=15°,進而得∠EBC=∠ABE+∠ABC=15°+90°=105°.
試題解析:
(1)如圖1,∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°,
(2)如圖2,過點B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,即∠ABD+∠ABG=90°,
又∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如圖3,過點B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)可得∠ABD=∠CBG,
∴∠ABF=∠GBF,
設(shè)∠DBE=α,∠ABF=β,則
∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得
(2α+β)+3α+(3α+β)=180°,①
由AB⊥BC,可得
β+β+2α=90°,②
由①②聯(lián)立方程組,解得α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列調(diào)查中,適宜采用全面調(diào)查的是( )
A. 了解明德集團所有中學(xué)生的視力情況
B. 了解某校七(4)班學(xué)生校服的尺碼情況
C. 調(diào)查北京2017年的游客流量
D. 調(diào)查中國“2018俄羅斯世界杯”欄目的收視率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】團隊游客年齡的方差分別是S甲2=1.4,S乙2=18.8,S丙2=2.5,導(dǎo)游小力最喜歡帶游客年齡相近齡的團隊,則他在甲、乙、丙三個的中應(yīng)選_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥百大集團新進了40臺空調(diào)機,60臺電冰箱,計劃調(diào)配給下屬的甲、乙兩個連鎖店銷售,其中70臺給甲連鎖店,30臺給乙連鎖店.兩個連鎖店銷售這兩種電器每臺的利潤(元)如下表:
空調(diào)機 | 電冰箱 | |
甲連鎖店 | 200 | 170 |
乙連鎖店 | 160 | 150 |
設(shè)集團調(diào)配給甲連鎖店x臺空調(diào)機,集團賣出這100臺電器的總利潤為y(元).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)為了促銷,集團決定僅對甲連鎖店的空調(diào)機每臺讓利a元銷售,其他的銷售利潤不變,并且讓利后每臺空調(diào)機的利潤仍然高于甲連鎖店銷售的每臺電冰箱的利潤,問該集團應(yīng)該如何設(shè)計調(diào)配方案,才能使總利潤達到最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),用兩個邊長為a的等邊三角形紙片(紙片不能裁剪)可以拼成的四邊形是( )
A.矩形
B.菱形
C.正方形
D.梯形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】比較﹣3,1,﹣2的大小,下列判斷正確的是( )
A.﹣3<﹣2<1 B.﹣2<﹣3<1 C.1<﹣2<﹣3 D.1<﹣3<﹣2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com