如圖,⊙O的半徑r=25,四邊形ABCD內(nèi)接圓⊙O,AC⊥BD于點(diǎn)H,P為CA延長(zhǎng)線(xiàn)上的一點(diǎn),且∠PDA=∠ABD.

(1)試判斷PD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若tan∠ADB=,PA=AH,求BD的長(zhǎng);
(3)在(2)的條件下,求四邊形ABCD的面積.
解:(1)PD與圓O相切。理由如下:

如圖,連接DO并延長(zhǎng)交圓于點(diǎn)E,連接AE,
∵DE是直徑,∴∠DAE=90°!唷螮+∠ADE=90°。
∵∠PDA=∠ABD=∠E,∴∠PDA+∠ADE=90°。
∴PD⊥DO。
∴PD與圓O相切于點(diǎn)D。
(2)∵tan∠ADB=,∴可設(shè)AH=3k,則DH=4k,
∵PA=AH,∴PA=()k,
∴PH=k。
∴在Rt△PDH中,。∴∠P=30°,∠PDH=60°。
∵PD⊥DO,∴∠BDE=90°﹣∠PDH=30°。
連接BE,則∠DBE=90°,DE=2r=50,
∴BD=DE•cos30°=。
(3)由(2)知,BH=﹣4k,∴HC=﹣4k)。
又∵PD2=PA×PC,∴。
解得:k=。
∴AC=3k+﹣4k)=+7,
∴S四邊形ABCD=BD•AC=××(+7)=900+。
(1)首先連接DO并延長(zhǎng)交圓于點(diǎn)E,連接AE,由DE是直徑,可得∠DAE的度數(shù),又由∠PDA=∠ABD=∠E,可證得PD⊥DO,即可得PD與圓O相切于點(diǎn)D。
(2)由tan∠ADB=,可設(shè)AH=3k,則DH=4k,又由PA=AH,易求得∠P=30°,∠PDH=60°,連接BE,則∠DBE=90°,DE=2r=50,可得BD=DE•cos30°=。
(3)由(2)易得﹣4k),又由PD2=PA×PC,可得方程:,解此方程即可求得AC的長(zhǎng),繼而求得四邊形ABCD的面積。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,A、B為是⊙O上兩點(diǎn),C、D分別在半徑OA、OB上,若AC=BD,求證:AD=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是的中點(diǎn),則下列結(jié)論不成立的是( 。
A.OC//AEB.EC=BCC.∠DAE=∠ABED.AC⊥OE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AE是半圓O的直徑,弦AB=BC=4,弦CD=DE=4,連結(jié)OB,OD,則圖中兩個(gè)陰影部分的面積和為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在同一平面直角坐標(biāo)系中有5個(gè)點(diǎn):A(1,1),B(-3,-1),C(-3,1),
D(-2,-2),E(0,-3)。

(1)畫(huà)出△ABC的外接圓⊙P,并指出點(diǎn)D與⊙P的位置關(guān)系;
(2)若直線(xiàn)l經(jīng)過(guò)點(diǎn)D(-2,-2),E(0,-3),判斷直線(xiàn)l與⊙P的位置關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線(xiàn)MN交⊙O于A、B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)
D作DE⊥MN于E.

(1)求證:DE是⊙O的切線(xiàn);
(2)若DE=6cm,AE=3cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若扇形的半徑為6,圓心角為120°,則此扇形的弧長(zhǎng)是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在如圖的方格紙中,每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.(每個(gè)小方格的頂點(diǎn)叫格點(diǎn))

(1)畫(huà)出△ABC向下平移3個(gè)單位后的△A1B1C1;
(2)畫(huà)出△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的△A2B2C2,并求點(diǎn)A旋轉(zhuǎn)到A2所經(jīng)過(guò)的路線(xiàn)長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,水平放置的圓柱形排水管道的截面直徑是1m,其中水面的寬AB為0.8m,則排水管內(nèi)水的深度為     m.

查看答案和解析>>

同步練習(xí)冊(cè)答案