【題目】已知一條拋物線經(jīng)過A(0,3),B(4,6)兩點,對稱軸是x=.
(1)求這條拋物線的關系式.
(2)證明:這條拋物線與x軸的兩個交點中,必存在點C,使得對x軸上任意點D都有AC+BC≤AD+BD.
【答案】(1)y=.(2)證明見解析.
【解析】本題主要考查了拋物線與x軸的交點和待定系數(shù)法求二次函數(shù)解析式
(1)先設出函數(shù)的解析式:y=ax2+bx+c,根據(jù)拋物線經(jīng)過A(0,3),B(4,6)兩點,用待定系數(shù)法求出函數(shù)的解析式;
(2)令y=0,得到方程,根據(jù)方程根與系數(shù)的關系求出拋物線與x軸的兩個交點,再根據(jù)三角形任意兩邊之和大于第三邊,來證明.
(1)解:設所求拋物線的關系式為y=ax2+bx+c,
∵A(0,3),B(4,6),對稱軸是直線x=.
∴, 解得
∴y=.
(2)證明:令y=0,得="0," ∴
∵A(0,3),取A點關于x軸的對稱點E,∴E (0,-3).
設直線BE的關系式為y=kx-3,把B(4,6)代入上式,得6=4k-3,
∴k=,∴y=x-3 .
由x-3=0,得x=.
故C為,C點與拋物線在x軸上的一個交點重合,
在x軸上任取一點D,在△BED中,BE< BD+DE.
又∵BE=EC+BC,EC=AC,ED=AD,∴AC+BC<AD+BD.
若D與C重合,則AC+BC="AD+BD." ∴AC+BC≤AD+BD.
科目:初中數(shù)學 來源: 題型:
【題目】游泳池常需進行換水清洗,圖中的折線表示的是游泳池換水清洗過程“排水—清洗—灌水”中水量y(m3)與時間t(min)之間的函數(shù)圖象.
(1)根據(jù)圖中提供的信息,求整個換水清洗過程水量y(m3)與時間t(min)的函數(shù)表達式;
(2)問排水、清洗、灌水各花多少時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級10個班師生舉行畢業(yè)文藝匯演,每班2個節(jié)目,有歌唱與舞蹈兩類節(jié)目,年級統(tǒng)計后發(fā)現(xiàn)歌唱類節(jié)目數(shù)比舞蹈類節(jié)目數(shù)的2倍少4個.
(1)九年級師生表演的歌唱與舞蹈類節(jié)目數(shù)各有多少個?
(2)該校七、八年級師生有小品節(jié)目參與,在歌唱、舞蹈、小品三類節(jié)目中,每個節(jié)目的演出平均用時分別是5分鐘、6分鐘、8分鐘,預計所有演出節(jié)目交接用時共花15分鐘.若從20:00開始,22:30之前演出結束,問參與的小品類節(jié)目最多能有多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明調(diào)查了全班本學期閱讀課外書的情況,并根據(jù)統(tǒng)計數(shù)據(jù),繪制如下的頻率分布折線圖和扇形統(tǒng)計圖。
根據(jù)以上信息,回答下列問題:
①這個班共有__________ 名學生,本學期閱讀量5本的有________ 人
②這個班本學期閱讀量的中位數(shù)是_______ 本,眾數(shù)是 ______ 本;
③求全班本學期比上學期每名同學的平均閱讀量增加了多少本?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,點O為直線AB上一點,過點O作射線OC,使∠AOC=120°,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖①中的三角板OMN擺放成如圖②所示的位置,使一邊OM在∠BOC的內(nèi)部,當OM平分∠BOC時,∠BON= ;(直接寫出結果)
(2)在(1)的條件下,作線段NO的延長線OP(如圖③所示),試說明射線OP是∠AOC的平分線;
(3)將圖①中的三角板OMN擺放成如圖④所示的位置,請?zhí)骄俊?/span>NOC與∠AOM之間的數(shù)量關系.(直接寫出結果,不須說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程組解應用題:某學校在籌建數(shù)學實驗室過程中,準備購進一批桌椅,現(xiàn)有三種桌椅可供選擇:甲種每套150元,乙種每套210元,丙種每套250元。若該學校同時購買其中兩種不同型號的桌椅50套,恰好花費了9000元,則共有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,矩形ABCD的邊AB=3,AD=2,將此矩形置入直角坐標系中,使AB在x 軸上,點C 在直線y=x-2上.
(1)求矩形各頂點坐標;
(2)若直線y=x-2與y軸交于點E,拋物線過E、A、B三點,求拋物線的關系式;
(3)判斷上述拋物線的頂點是否落在矩形ABCD內(nèi)部,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°, BC=3cm, CD⊥AB于D, 在AC上取一點E,使EC=BC,過點E作EF⊥AC交CD的延長線于點F,若EF=5cm,求AE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com