【題目】如圖,在△ABC 中,∠B=32°,∠C =48°,AD⊥BC于點(diǎn)D,AE平分∠BAC交BC于點(diǎn)E,DF⊥AE于點(diǎn)F,求∠ADF的度數(shù).

【答案】解:在△ABC中,∠B=32°,∠C=48°,

∴∠BAC=180°∠B∠C=100°,

∵AE平分∠BAC,

∴∠CAE= ∠BAC=50°,

∵AD⊥BC,

∴∠CAD=90°∠C=42°,

∴∠DAE=∠CAE∠CAD=8°,

∵DF⊥AE,

∴∠ADF=90°∠DAE=82°.


【解析】根據(jù)三角形內(nèi)角和定理和角平分線定義求出∠ADF的度數(shù)即可.
【考點(diǎn)精析】關(guān)于本題考查的三角形的內(nèi)角和外角,需要了解三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長最小時(shí),則∠AMN+∠ANM的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)如圖①,OP是∠MON的平分線,點(diǎn)A為OM上一點(diǎn),點(diǎn)B為OP上一點(diǎn).請(qǐng)你利用該圖形在ON上找一點(diǎn)C,使△COB≌△AOB,請(qǐng)?jiān)趫D①畫出圖形.參考這個(gè)作全等三角形的方法,解答下列問題:

(2)如圖②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點(diǎn)F.請(qǐng)你寫出FE與FD之間的數(shù)量關(guān)系,并說明理由;

(3)如圖③,在△ABC中,如果∠ACB不是直角,而(1)中的其他條件不變,在(2)中所得結(jié)論是否仍然成立?請(qǐng)你直接作出判斷,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長方形的正投影不可能是(  )

A.正方形B.長方形C.線段D.梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在,斜邊兩個(gè)端點(diǎn)分別在相互垂直的射線上滑動(dòng),下列結(jié)論:

兩點(diǎn)關(guān)于對(duì)稱;

兩點(diǎn)距離的最大值為

平分,

斜邊的中點(diǎn)運(yùn)動(dòng)路徑的長為.

其中正確的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AB=5cm,BC=3cm,若動(dòng)點(diǎn)P從點(diǎn)C開始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.

(1)出發(fā)2秒后,求△ABP的周長.
(2)問t為何值時(shí),△BCP為等腰三角形?(要有必要的過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:

數(shù)學(xué)活動(dòng)課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿足條件的點(diǎn),使智慧三角形(畫出點(diǎn)的位置,保留作圖痕跡);

如圖,在正方形中,的中點(diǎn),上一點(diǎn),且,試判斷是否為智慧三角形,并說明理由;

運(yùn)用:

如圖,在平面直角坐標(biāo)系中,的半徑為,點(diǎn)是直線上的一點(diǎn),若在上存在一點(diǎn),使得智慧三角形,當(dāng)其面積取得最小值時(shí),直接寫出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD的對(duì)角線長為8cm,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),則四邊形EFGH的周長等于cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果水位升高6m時(shí)水位變化記作+6m,那么水位下降3m時(shí)水位變化記作(

A.3mB.3mC.6mD.6m

查看答案和解析>>

同步練習(xí)冊(cè)答案