【題目】如圖,已知線段AB=9,點C為線段AB上一點,AC=3,D為平面內(nèi)一動點,且滿足CD=3,連接BDBD繞點D逆時針旋轉(zhuǎn)90DE,連接BE、AE,AE的最大值為 ________

【答案】

【解析】

BC為直角邊在BC上方作等腰直角三角形BOC,如圖,連接AO、OE.證明EBO∽△DBC,從而發(fā)現(xiàn)E點運動的軌跡是以O為圓心,OE為半徑的圓,求出AO,最后根據(jù)三角形三邊關系,可得AC最大值.

解:以BC為直角邊在BC上方作等腰直角三角形BOC,如圖,連接AO、OE

,

∵∠EBD=∠OBC,

∴∠EBO=∠DBC

∴△EBO∽△DBC

D點運動軌跡是以C為圓心,CD3為半徑的圓,

E點運動的軌跡是以O為圓心,OE為半徑的圓.

AE≤AOOE,AO,OE

AE最大值為:

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華優(yōu)秀傳統(tǒng)文化,某校開展經(jīng)典誦讀比賽活動,誦讀材料有《論語》、《大學》、《中庸》(依次用字母A,BC表示這三個材料),將AB,C分別寫在3張完全相同的不透明卡片的正面上,背面朝上洗勻后放在桌面上,比賽時小禮先從中隨機抽取一張卡片,記下內(nèi)容后放回,洗勻后,再由小智從中隨機抽取一張卡片,他倆按各自抽取的內(nèi)容進行誦讀比賽.

1)小禮誦讀《論語》的概率是   ;(直接寫出答案)

2)請用列表或畫樹狀圖的方法求他倆誦讀兩個不同材料的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象交x軸于點A,B(點A在點B的左側).

1)求點AB的坐標,并根據(jù)該函數(shù)圖象寫出y0x的取值范圍;

2)把點B向上平移m個單位得點B1.若點B1向左平移n個單位,將與該二次函數(shù)圖象上的點B2重合;若點B1向左平移(n6)個單位,將與該二次函數(shù)圖象上的點B3重合.已知m0,n0,求mn的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+m與雙曲線y=相交于A,B兩點,BCx軸,ACy軸,則△ABC面積的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1) 2x2-x=0

(2) x2-4x=4

(3) 6x+9=2x2

(4) 4y2-4y-2=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AC、BD相交于點O,E為AB的中點,且DE⊥AB,若AC=6,則DE的長為( 。

A. 3 B. 3 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在菱形ABCD中,EBC上一點,且AE=AB,∠EAD=2∠BAE.

1)求∠BAD的度數(shù);

2)求證:BE=AF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1993年起,聯(lián)合國將每年的322日定為世界水日,宗旨是喚起公眾的節(jié)水意識,加強水資源保護.某校在開展節(jié)約每一滴水的活動中,從初三年級隨機選出20名學生統(tǒng)計出各自家庭一個月的節(jié)約用水量,有關數(shù)據(jù)整理如下表.

節(jié)約用水量(單位:噸)

1

1.2

1.4

2

2.5

家庭數(shù)

4

6

5

3

2

這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )

A. 1.2,1.2; B. 1.4,1.2; C. 1.3,1.4; D. 1.3,1.2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在半徑為2的扇形中,°,點C在半徑OB上,AC的垂直平分線交OA于點D,交弧AB于點E,聯(lián)結

1)若C是半徑OB中點,求的正弦值;

2)若E是弧AB的中點,求證:;

3)聯(lián)結CE,當△DCE是以CD為腰的等腰三角形時,求CD的長.

查看答案和解析>>

同步練習冊答案