【題目】為了了解某校九年級(jí)(1)班學(xué)生的體育測(cè)試情況,對(duì)全班學(xué)生的體育成績(jī)進(jìn)行了統(tǒng)計(jì),并繪制出以下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖
分組 | 分?jǐn)?shù)段(分) | 頻數(shù) |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |
(1)求全班學(xué)生人數(shù)和m的值;
(2)該班學(xué)生的體育成績(jī)的中位數(shù)落在哪個(gè)分?jǐn)?shù)段內(nèi)?
(3)該班體育成績(jī)滿分(60分)共有3人,其中男生2人,女生1人,現(xiàn)從這3人中隨機(jī)選取2人參加校運(yùn)動(dòng)會(huì),求恰好選到一男一女生的概率
【答案】
(1)解:全班學(xué)生人數(shù):15÷30%=50(人),
m=50﹣2﹣5﹣15﹣10=18
(2)解:中位數(shù)應(yīng)是第25與26名學(xué)生成績(jī)的平均數(shù),
所以中位數(shù)為51≤x<56內(nèi)
(3)解:畫樹狀圖:
,
所以共有6種結(jié)果,其中一男一女的結(jié)果有4種,
所以P(一男一女)= =
【解析】(1)利用C組學(xué)生頻數(shù)除以C組學(xué)生所占百分比即可得到全班學(xué)生人數(shù),利用學(xué)生總數(shù)減去A、B、C、E四段的頻數(shù)即可得到m的值;(2)根據(jù)中位數(shù)定義:將一組數(shù)據(jù)按照從小到大(或從大到。┑捻樞蚺帕,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)可確定中位數(shù)應(yīng)是第25與26名學(xué)生成績(jī)的平均數(shù),進(jìn)而可得答案;(3)首先畫出樹狀圖可以得到答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計(jì)圖的相關(guān)知識(shí),掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況,以及對(duì)列表法與樹狀圖法的理解,了解當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式中:
①由3x=﹣4系數(shù)化為1得x=﹣;
②由5=2﹣x移項(xiàng)得x=5﹣2;
③由 去分母得2(2x﹣1)=1+3(x﹣3);
④由2(2x﹣1)﹣3(x﹣3)=1去括號(hào)得4x﹣2﹣3x﹣9=1.
其中正確的個(gè)數(shù)有( )
A. 0個(gè) B. 1個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:
A | B | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 400 | 280 |
紅星中學(xué)根據(jù)實(shí)際情況,計(jì)劃租用A,B型客車共5輛,同時(shí)送七年級(jí)師生到基地參加社會(huì)實(shí)踐活動(dòng),設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:
(1)用含x的式子填寫下表:
車輛數(shù)(輛) | 載客量(人) | 租金(元) | |
A | x | 45x | 400x |
B | 5-x |
(2)若要保證租車費(fèi)用不超過1900元,求x的最大值;
(3)在(2)的條件下,若七年級(jí)師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,自左至右,第1個(gè)圖由1個(gè)正六邊形、6個(gè)正方形和6個(gè)等邊三角形組成;第2個(gè)圖由2個(gè)正六邊形、11個(gè)正方形和10個(gè)等邊三角形組成;第3個(gè)圖由3個(gè)正六邊形、16個(gè)正方形和14個(gè)等邊三角形組成;…按照此規(guī)律,第100個(gè)圖中正方形和等邊三角形的個(gè)數(shù)之和是( )
A. 900 B. 903 C. 906 D. 807
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承優(yōu)秀傳統(tǒng)文化,我市組織了一次初三年級(jí)1 200名學(xué)生參加的“漢字聽寫”大賽,為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了100名學(xué)生的成績(jī)(滿分50分),整理得到如下的統(tǒng)計(jì)圖表:
成績(jī)(分) | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
人數(shù) | 1 | 2 | 3 | 3 | 6 | 7 | 5 | 8 | 15 | 9 | 11 | 12 | 8 | 6 | 4 |
成績(jī)分組 | 頻數(shù) | 頻率(百分比) |
35≤x<38 | 3 | 0.03 |
38≤x<41 | a | 0.12 |
41≤x<44 | 20 | 0.20 |
44≤x<47 | 35 | 0.35 |
47≤x≤50 | 30 | b |
請(qǐng)根據(jù)所提供的信息解答下列問題:
(1)頻率統(tǒng)計(jì)表中a=________,b=_______;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)請(qǐng)根據(jù)抽樣統(tǒng)計(jì)結(jié)果,估計(jì)該次大賽中成績(jī)不低于41分的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB、DC相交于點(diǎn)E、F,且∠EAF=60°
(1)如圖1,當(dāng)點(diǎn)E是CB上任意一點(diǎn)時(shí)(點(diǎn)E不與B、C重合),求證:BE=CF;
(2)如圖2,當(dāng)點(diǎn)E在CB的延長(zhǎng)線上時(shí),且∠EAB=15°,求點(diǎn)F到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某輪船往返于A、B兩地之間,設(shè)船在靜水中的速度不變,那么,當(dāng)水的流速增大時(shí),輪船往返一次所用的時(shí)間( 。
A. 不變 B. 增加 C. 減少 D. 增加,減少都有可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)n位自然數(shù)能被x0整除,依次輪換個(gè)位數(shù)字得到的新數(shù)能被(x0+1)整除,再依次輪換個(gè)位數(shù)字得到的新數(shù)能被(x0+2)整除,按此規(guī)律輪換后,能被(x0+3)整除,…,能被(x0+n﹣1)整除,則稱這個(gè)n位數(shù)是x0的一個(gè)“輪換數(shù)”.例如:60能被5整除,06能被6整除,則稱兩位數(shù)60是5的一個(gè)“輪換數(shù)”.再如:324能被2整除,243能被3整除,432能被4整除,則稱三位數(shù)324是2的一個(gè)“輪換數(shù)”.
(1)請(qǐng)判斷:自然數(shù)24 “輪換數(shù)”,245 “輪換數(shù)”(填“是”或“不是”);
(2)若一個(gè)兩位自然數(shù)的個(gè)位數(shù)字是m(0<m<5,且為整數(shù)),十位數(shù)字是2m,試說明:這個(gè)兩位自然數(shù)一定是“輪換數(shù)”;
(3)若三位自然數(shù)是4的一個(gè)“輪換數(shù)”,其中b=0,請(qǐng)直接寫出這個(gè)三位自然數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,∠B=45°,∠BCA=30°,過點(diǎn)A、B、C三點(diǎn)作⊙O,過點(diǎn)C作⊙O的切線交BA延長(zhǎng)線于點(diǎn)D,連接OA交BC于E.
(1)求證:OA∥CD;
(2)求證:△ABE∽△DCA;
(3)若OA=2,求BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com