【題目】(1)問題發(fā)現(xiàn)
如圖①,是等腰直角三角形,四邊形是正方形,點與點重合,則線段與之間的數(shù)量關系和位置關系分別是 .
(2)深入探究
如圖②,是等腰直角三角形,四邊形是正方形,點在直線上,對角線所在的直線交直線于點,則線段之間有什么數(shù)量關系?請僅就圖②給出證明.
(3)拓展思維
如圖②,若點在直線上,且線段,當時,直接寫出此時正方形的面積.
【答案】(1);(2),證明見解析;(3)5或13
【解析】
(1)根據(jù)已知可得CF⊥BC,AD⊥BC,即可得出BD⊥CF,再根據(jù)等腰三角形的性質(zhì)即可得出BD=CF;
(2)連接DF,GF,先證明△BAD≌△CAF,再根據(jù)勾股定理即可證明;
(3)分①當D在BC上時和②當D在BC的延長線上時,兩種情況結(jié)合正方形的性質(zhì)及勾股定理進行討論求解即可.
解:(1)BD=CF,BD⊥CF
∵ADEF是正方形,
∴∠ADE=∠FCD=90°,AD=CD=CF=AF,
∴CF⊥BC,AD⊥BC,
∴BD⊥CF,
∵△ABC是等腰直角三角形,AD⊥BC,
∴D是BC中點,
∴BD=CD,
∴BD=CF;
(2)BD2+CG2=DG2,
證明:連接DF,GF,
∵四邊形ADEF是正方形,
∴AE垂直平分DF,AD=AF,∠DAF=90°,
∴DG=FG,
∵△ABC是等腰直角三角形,
∴AB=AC,∠BAC=90°,∠B=∠ACB=45°,
∴∠BAC-∠DAC=∠DAF-∠DAC,
即∠BAD=∠CAF,
在△BAD和△CAF中,
,
∴△BAD≌△CAF(SAS),
∴BD=CF,∠B=∠ACF=45°,
∴∠GCF=∠ACB+∠ACF=90°,
在Rt△GCF中,由勾股定理,得CF2+CG2=FG2,
∴BD2+CG2=DG2;
(3)①當D在BC上時,
如圖,過A點作AH⊥BC于點H,
∵△ABC是等腰直角三角形,
∴AH=BH=BC=2,
∵BD=1,
∴DH=BH-BD=1,
∴在Rt△ADH中,AD==,
∴S正方形ADEF=AD2=5;
②當D在BC的延長線上時,
如圖,過A點作AH⊥BC于點H,
∵△ABC是等腰直角三角形,
∴AH=BH=BC=2,
∵BD=1,
∴DH=BH+BD=3,
∴在Rt△ADH中,AD==,
∴S正方形ADEF=AD2=13;
綜上:正方形ADEF的面積為5或13.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的周長是28cm,且AB比BC長2cm.若點P從點A出發(fā),以1cm/s的速度沿A→D→C方向勻速運動,同時點Q從點A出發(fā),以2cm/s的速度沿A→B→C方向勻速運動,當一個點到達點C時,另一個點也隨之停止運動.若設運動時間為t(s),△APQ的面積為S(cm2),則S(cm2)與t(s)之間的函數(shù)圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)與正比例函數(shù)交于格點(網(wǎng)格線的交點).
(1)填空: ; ;
(2)當時,直接寫出時,的取值范圍;
(3)點是以格點為圓心, 為半徑的圓上一動點,連接取的中點試確定線段的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,以對角線BD為邊作菱形BDFE,使B,C,E三點在同一直線上,連接BF,交CD于點G.
(1)求證:CG=CE;
(2)若正方形邊長為4,求菱形BDFE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2+(2k+1)x+k2=0①有兩個不相等的實數(shù)根.
(1)求k的取值范圍;
(2)設方程①的兩個實數(shù)根分別為x1,x2,當k=1時,求x12+x22的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三位女同學競選學校即將組織的“中國夢,我的夢”文藝演出女主持人,它們的筆試成績和口試成績、形象得分,分別如下:
筆試 | |||
口試 | |||
形象 | |||
平均分 |
(1)① ;
②在表格中的個數(shù)的中位數(shù)是 ,眾數(shù)是
(2)經(jīng)學校研究決定,在兩位同學中選一位.評比方法:按筆試成績:口試成績:形象得分進行計算,得分最高的同學為本次文藝演出的女主持人.請你算一算哪位同學最后被選為本次文藝演出的女主持人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的外接圓,是的直徑,點是半圓的中點,點是上一動點(不與點、重合),連接交于點.
圖1 圖2
(1)如圖1,過點作,交延長線于點,求證:與相切;
(2)若,,求的長;
(3)如圖2,把沿直線翻折得到,連接,當點在運動時,探究線段、、之間的數(shù)量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com