【題目】1)某學(xué)習(xí)小組在探究三角形全等時(shí),發(fā)現(xiàn)了下面這種典型的基本圖形.如圖①,已知:在ABC中,∠BAC=90°AB=AC,直線(xiàn)l經(jīng)過(guò)點(diǎn)ABD⊥直線(xiàn)L,CE⊥直線(xiàn)L,垂足分別為點(diǎn)DE.證明:①△ABD≌△CAE;②DE=BD+CE。

2)組員小劉想,如果三個(gè)角不是直角,那結(jié)論是否會(huì)成立呢?如圖②,將(1)中的條件改為:在ABC中,AB=AC,D、AE三點(diǎn)都在直線(xiàn)L上,并且有∠BDA=AEC=BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

【答案】1)見(jiàn)解析;(2)成立,理由見(jiàn)解析.

【解析】

1)根據(jù)同角的余角相等,可推出∠ACE=BAD,然后用角角邊證明△ABD≌△CAE,再用全等三角形對(duì)應(yīng)邊相等得到BD=AE,AD=CE,從而得到DE=BD+CE;

2)利用三角形外角性質(zhì)可證得∠ABD=CAE,然后用角角邊證明△ABD≌△CAE,同理可證明DE=BD+CE.

證明:(1)∵BD⊥直線(xiàn)L,CE⊥直線(xiàn)L,

∴∠ADB=CEA=90°

∴∠ACE+EAC=90°

又∵∠BAC=90°

∴∠BAD+EAC=90°,

∴∠ACE=BAD

在△ABD和△CAE中,

∴△ABD≌△CAEAAS

BD=AEAD=CE

DE= AE+AD=BD+CE

2)成立,理由如下:

∵∠BAE=BAC+CAE=ABD+BDA,∠BDA=BAC=α

∴∠CAE=ABD

在△ABD和△CAE中,

∴△ABD≌△CAEAAS

BD=AEAD=CE

DE= AE+AD=BD+CE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鹽城市初級(jí)中學(xué)為了緩解校門(mén)口的交通堵塞,倡導(dǎo)學(xué)生步行上學(xué). 小麗步行從家去學(xué)校,圖中的線(xiàn)段表示小麗步行的路程s(米)與所用時(shí)間t(分鐘)之間的函數(shù)關(guān)系. 試根據(jù)函數(shù)圖像回答下列問(wèn)題:

1)小麗家離學(xué)校 米;

2)小麗步行的速度是 /分鐘;

3)求出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45

1)求一次函數(shù)y=kx+b的表達(dá)式;

2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x之間的關(guān)系式;銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)二次函數(shù)的圖象,三位同學(xué)分別說(shuō)出了它的一些特點(diǎn):

甲:對(duì)稱(chēng)軸為直線(xiàn)x=4

乙:與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)都是整數(shù).

丙:與y軸交點(diǎn)的縱坐標(biāo)也是整數(shù),且以這三個(gè)點(diǎn)為頂點(diǎn)的三角形面積為3.請(qǐng)你寫(xiě)出滿(mǎn)足上述全部特點(diǎn)的一個(gè)二次函數(shù)解析式__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點(diǎn),ABCD的邊滿(mǎn)足條件:_____時(shí)(填上一個(gè)你認(rèn)為正確的條件),四邊形EFGH是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列條件中:①中,能確△ABC是直角三角形的定條件有

A. ①② B. ③④ C. ①③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的三邊長(zhǎng)分別為m2,2m+18

1)試確定m的取值范圍;

2)若ABC的三邊均為整數(shù),求ABC的周長(zhǎng);

3)若ABC為等腰三角形,試確定另外兩邊的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“綠水青山就是金山銀山”,隨著生活水平的提高,人們對(duì)飲水品質(zhì)的需求越來(lái)越高.孝感市槐蔭公司根據(jù)市場(chǎng)需求代理、兩種型號(hào)的凈水器,每臺(tái)型凈水器比每臺(tái)型凈水器進(jìn)價(jià)多200元,用5萬(wàn)元購(gòu)進(jìn)型凈水器與用4.5萬(wàn)元購(gòu)進(jìn)型凈水器的數(shù)量相等.

(1)求每臺(tái)型、型凈水器的進(jìn)價(jià)各是多少元;

(2)槐蔭公司計(jì)劃購(gòu)進(jìn)、兩種型號(hào)的凈水器共50臺(tái)進(jìn)行試銷(xiāo),其中型凈水器為臺(tái),購(gòu)買(mǎi)資金不超過(guò)9.8萬(wàn)元.試銷(xiāo)時(shí)型凈水器每臺(tái)售價(jià)2500元,型凈水器每臺(tái)售價(jià)2180元.槐蔭公司決定從銷(xiāo)售型凈水器的利潤(rùn)中按每臺(tái)捐獻(xiàn)元作為公司幫扶貧困村飲水改造資金,設(shè)槐蔭公司售完50臺(tái)凈水器并捐獻(xiàn)扶貧資金后獲得的利潤(rùn)為,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)a,b,c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_________處。(填數(shù)字)

查看答案和解析>>

同步練習(xí)冊(cè)答案