【題目】用適當(dāng)?shù)姆椒ń庖辉畏匠?/span>
(1)(x﹣1)2=4
(2)(x﹣3)2=2x(3﹣x)
(3)2x2+5x﹣1=0
(4)(x﹣1)(x﹣3)=8
【答案】(1)x1=3,x2=﹣1;(2)x1=3,x2=1;(3)x1=,x2=;(4)x1=5,x2=﹣1
【解析】
(1)算開方,即可求出x的值.
(2)移項(xiàng)和合并同類項(xiàng),根據(jù)因式分解法求解即可.
(3)利用公式法求解即可.
(4)先去括號(hào),再利用因式分解法求解即可.
解:(1)開方得:x﹣1=±2,
即x﹣1=2或x﹣1=﹣2,
∴x1=3,x2=﹣1;
(2))(x﹣3)2+2x(x﹣3)=0,
(x﹣3)(x﹣3+2x)=0,
∴x﹣3=0或3x﹣3=0,
∴x1=3,x2=1;
(3)這里a=2,b=5,c=﹣1,
∵b2﹣4ac=25﹣4×2×(﹣1)=33>0,
∴x==,
∴x1=,x2=;
(4)整理為x2﹣4x﹣5=0,
(x﹣5)(x+1)=0,
∴x﹣5=0或x+1=0,
∴x1=5,x2=﹣1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,D是⊙O上一點(diǎn),點(diǎn)E是AC的中點(diǎn),過點(diǎn)A作⊙O的切線交BD的延長線于點(diǎn)F.連接AE并延長交BF于點(diǎn)C.
(1)求證:AB=BC;
(2)如果AB=5,tan∠FAC=,求FC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)F在邊BC上,過點(diǎn)F作EF⊥BC,且FE=FC(CE<CB),連接CE、AE,點(diǎn)G是AE的中點(diǎn),連接FG.
(1)用等式表示線段BF與FG的數(shù)量關(guān)系是 ;
(2)將圖1中的△CEF繞點(diǎn)C按逆時(shí)針旋轉(zhuǎn),使△CEF的頂點(diǎn)F恰好在正方形ABCD的對角線AC上,點(diǎn)G仍是AE的中點(diǎn),連接FG、DF.
①在圖2中,依據(jù)題意補(bǔ)全圖形;
②求證:DF=FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,直線AB交x軸于點(diǎn)A,交y軸于點(diǎn)B,AB=,tan∠BAO=3.
(1)求直線AB的解析式;
(2)直線y=kx+b經(jīng)過點(diǎn)B交x軸交于點(diǎn)C,且∠ABC=45°,AD⊥BC于點(diǎn)D.動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿CB方向以每秒個(gè)單位長度的速度向終點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t,設(shè)△ADP的面積為S,求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍.
(3)在(2)的條件下,點(diǎn)P在線段BD上,點(diǎn)F在線段AB上,∠APC=∠FPB,連接AP,過點(diǎn)F作FG⊥AP于點(diǎn)G,交AD于點(diǎn)H,若DP=DH,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,拋物線的頂點(diǎn)為M:平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時(shí),就稱△AMB為該拋物線的“完美三角形”.
(1)如圖2,求出拋物線y=x2的“完美三角形”斜邊AB的長;
(2)若拋物線y=ax2+4的“完美三角形”的斜邊長為4,求a的值;
(3)若拋物線y=mx2+2x+n﹣5的“完美三角形”斜邊長為n,且y=mx2+2x+n﹣5的最大值為﹣1,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OC是⊙O的半徑,點(diǎn)D是半圓AB上一動(dòng)點(diǎn)(不與A、B重合),連結(jié)DC交直徑AB與點(diǎn)E,若∠AOC=60°,則∠AED的范圍為( )
A.0°< ∠AED <180°B.30°< ∠AED <120°
C.60°< ∠AED <120°D.60°< ∠AED <150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)報(bào)名參加校運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m,200m,分別用、、表示;田賽項(xiàng)目:跳遠(yuǎn),跳高分別用、表示.
該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率為______;
該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)A的雙曲線y=(x>0)同時(shí)經(jīng)過點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)A的橫坐標(biāo)為,∠AOB=∠OBA=45°,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正方形ABCD內(nèi)一點(diǎn),∠APB=135 , BP=1,AP=,求PC的值( 。
A. B. 3 C. D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com