今年我國多個省市遭受嚴重干旱,受旱災的影響,4月份,我市某蔬菜價格呈上升趨勢,其前四周每周的平均銷售價格變化如下表:
周數(shù)x1234
價格y(元/kg)22.22.42.6
進入5月,由于本地蔬菜的上市,此種蔬菜的平均銷售價格y(元/千克)從5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y與周數(shù)x的變化情況滿足二次函數(shù)y=-
1
20
x2+bx+c.
(1)請觀察題中的表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識直接寫出4月份y與x的函數(shù)關(guān)系式,并求出5月份y與x的函數(shù)關(guān)系式;
(2)若4月份此種蔬菜的進價m(元/千克)與周數(shù)x所滿足的函數(shù)關(guān)系為m=
1
4
x+1.2,5月份此種蔬菜的進價m(元/千克)與周數(shù)x所滿足的函數(shù)關(guān)系為m=-
1
5
x+2.試問4月份與5月份分別在哪一周銷售此種蔬菜一千克的利潤最大?且最大利潤分別是多少?
(3)若5月份的第2周共銷售100噸此種蔬菜.從5月份的第3周起,由于受暴雨的影響,此種蔬菜的可供銷量將在第2周銷量的基礎上每周減少a%,政府為穩(wěn)定蔬菜價格,從外地調(diào)運2噸此種蔬菜,剛好滿足本地市民的需要,且使此種蔬菜的銷售價格比第2周僅上漲0.8a%.若在這一舉措下,此種蔬菜在第3周的總銷售額與第2周剛好持平,請你參考以下數(shù)據(jù),通過計算估算出a的整數(shù)值.
(參考數(shù)據(jù):372=1369,382=1444,392=1521,402=1600,412=1681)
(1)4月份y與x滿足的函數(shù)關(guān)系式為y=0.2x+1.8
把x=1,y=2.8和x=2,y=2.4,分別代入y=-
1
20
x2
+bx+c得
-
1
20
+b+c=2.8
-
1
20
×4+2b+c=2.4

解得:
b=-0.25
c=3.1
,
∴5月份y與x滿足的函數(shù)關(guān)系式為y=-0.05x2-0.25x+3.1;

(2)設4月份第x周銷售此種蔬菜一千克的利潤為W1元,5月份第x周銷售此種蔬菜一千克的利潤為W2元.則:
W1=(0.2x+1.8)-(
1
4
x+1.2)=-0.05x+0.6
∵-0.05<0,∴W1隨x的增大而減少
∴當x=1時,W1最大=-0.05+0.6=0.55
W2=(-0.05x2-0.25x+3.1)-(-
1
5
x+2)=-0.05x2-0.05x+1.1
∵對稱軸為x=-
-0.05
2×(-0.05)
=-0.5,且-0.05<0,
∴當x=1時,W2最大=1
∴4月份銷售此種蔬菜一千克的利潤在第1周最大,最大利潤為0.55元,
5月份銷售此種蔬菜一千克的利潤在第1周最大,最大利潤為1元.

(3)由題意知:[100000(1-a%)+2000]×2.4(1+0.8a%)=2.4×100000,
整理,得a2+23a-250=0,解得a=
-23±
1529
2

∵392=1521,402=1600,而1529更接近1521,∴取
1529
≈39
∴a≈-31(舍去)或a≈8.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=
1
2
x2+bx與直線y=2x交于點O(0,0),A(a,12).點B是拋物線上O,A之間的一個動點,過點B分別作x軸、y軸的平行線與直線OA交于點C,E.
(1)求拋物線的函數(shù)解析式;
(2)若點C為OA的中點,求BC的長;
(3)以BC,BE為邊構(gòu)造矩形BCDE,設點D的坐標為(m,n),求出m,n之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,拋物線y=ax2+bx+6經(jīng)過點A(-3,0)和點B(2,0).直線y=h(h為常數(shù),且0<h<6)與BC交于點D,與y軸交于點E,與AC交于點F,與拋物線在第二象限交于點G.
(1)求拋物線的解析式;
(2)連接BE,求h為何值時,△BDE的面積最大;
(3)已知一定點M(-2,0).問:是否存在這樣的直線y=h,使△OMF是等腰三角形?若存在,請求出h的值和點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如果拋物線y=-x2+2(m-1)x+m+1與x軸都交于A,B兩點,且A點在x軸的正半軸上,B點在x軸的負半軸上,OA的長是a,OB的長是b.
(1)求m的取值范圍;
(2)若a:b=3:1,求m的值,并寫出此時拋物線的解析式;
(3)設(2)中的拋物線與y軸交于點C,拋物線的頂點是M,問:拋物線上是否存在點P,使△PAB的面積等于△BCM面積的8倍?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某大學的校門是一拋物線水泥建筑物,大門的地面寬度為6米,兩側(cè)距地面2米高處各有一個掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為4米,則校門的高為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,⊙O1和⊙O2外切于點C,AB是⊙O1和⊙O2的外公切線,A、B為切點,且∠ACB=90°.以AB所在直線為軸,過點C且垂直于AB的直線為軸建立直角坐標系,已知AO=4,OB=1.
(1)分別求出A、B、C各點的坐標;
(2)求經(jīng)過A、B、C三點的拋物線y=ax2+bx+c的解析式;
(3)如果⊙O1的半徑是5,問這條拋物線的頂點是否落在兩圓連心線O1O2上?如果在,請證明;如果不在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商店將進價為100元的某商品按120元的價格出售,可賣出300件;若商店在120元的基礎上每漲價1元,就要少賣10件,而每降價1元,就可多賣30件.
(1)求所獲利潤y(元)與售價x(元)之間的函數(shù)關(guān)系式;
(2)為了獲取最大利潤,商店應將每件商品的售價定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,長方形雞場的一邊靠墻(墻長18m),墻對面有一個2m寬的門,另三邊用竹籬笆圍成,籬笆總長33m,
(1)若雞場面積為150m2,求雞場的長和寬各為多少m?
(2)求圍成的雞場的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

涪陵榨菜是重慶市農(nóng)村經(jīng)濟中產(chǎn)銷規(guī)模最大、品牌知名度最高、輻射帶動能力最強的特色支柱產(chǎn)業(yè).某知名榨菜企業(yè)為順應市場需求推出了“五味榨菜”禮盒,成本為20元/盒.年銷售量y(萬盒)與售價x(元/盒)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)結(jié)合圖象求y與x之間的函數(shù)關(guān)系;
(2)求“五味榨菜”禮盒的年獲利w(萬元)與x之間的函數(shù)關(guān)系,并求當售價為多少元時可以獲得最大利潤,最大利潤是多少萬元?
(3)去年,公司一直按照(2)中獲得最大利潤時的售價進行銷售,今年在保持售價不變的基礎上,公司發(fā)力品牌營銷,決定拿出部分資金進行廣告宣傳.經(jīng)調(diào)查發(fā)現(xiàn):①每年有11萬盒產(chǎn)品供給固定客戶,其余產(chǎn)品全部被潛在客房購買;②若廣告投入為a萬元,則潛在客戶的購買量將是去年購買量的m倍,則m=-
1
900
(a-30)2+2
;③受公司生產(chǎn)規(guī)模及資金限制,公司的年產(chǎn)量不超過28萬盒,廣告投入不超過32萬元.問公司在廣告上投入多少資金可以使公司獲得最大利潤,最大利潤為多少萬元?(利潤=總銷售額-總成本-廣告費)

查看答案和解析>>

同步練習冊答案