【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上,OC=3,OA=2 ,D是BC的中點,將△OCD沿直線OD折疊后得到△OGD,延長OG交AB于點E,連接DE,則點G的坐標(biāo)為 .
【答案】( , )
【解析】解:過點G作GF⊥OA于點F,如圖所示.
∵點D為BC的中點,
∴DC=DB=DG,
∵四邊形OABC是矩形,
∴AB=OC,OA=BC,∠C=∠OGD=∠ABC=90°.
在Rt△DGE和Rt△DBE中, ,
∴Rt△DGE≌Rt△DBE(HL),
∴BE=GE.
設(shè)AE=a,則BE=3﹣a,DE= = ,OG=OC=3,
∴OE=OG++GE,即 =3+3﹣a,
解得:a=1,
∴AE=1,OE=5.
∵GF⊥OA,EA⊥OA,
∴GF∥EA,
∴ ,
∴OF= = = ,GF= = = ,
∴點G的坐標(biāo)為( , ).
故答案為:( , ).
本題考查了翻折變換、矩形的性質(zhì)、全等三角形的判定及性質(zhì)以及平行線的性質(zhì),解題的關(guān)鍵是求出線段AE的長度.本題屬于中檔題,難度不大,解決該題型題目時,利用勾股定理得出邊與邊之間的關(guān)系是關(guān)鍵.過點G作GF⊥OA于點F,根據(jù)全等直角三角形的判定定理(HL)證出Rt△DGE≌Rt△DBE,從而得出BE=GE,根據(jù)勾股定理可列出關(guān)于AE長度的方程,解方程可得出AE的長度,再根據(jù)平行線的性質(zhì)即可得出比例關(guān)系 ,代入數(shù)據(jù)即可求出點G的坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+mx+m﹣4經(jīng)過點A(5,﹣5),若拋物線頂點為P.
(1)求點P的坐標(biāo);
(2)在直線OA上方的拋物線上任取一點M,連接MO、MA,求△MOA的面積取得最大時的點M坐標(biāo);
(3)如圖1,將原拋物線沿射線OP方向進行平移得到新的拋物線,新拋物線與射線OP交于C、D兩點.試問線段CD的長度是否為定值,若是請求出這個定值;若不是請說明理由.(提示:若點C(x1 , y1),D(x2 , y2),則CD的長度d= )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的面積為3cm2 , E為BC邊上一點,∠BAE=30°,F(xiàn)為AE的中點,過點F作直線分別與AB,DC相交于點M,N.若MN=AE,則AM的長等于 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點C在線段AB上,點M、N分別是AC、BC的中點.(10分)
(1)若AC=8,CB=6,求線段MN的長;
(2)若點C為線段AB上任意一點,且滿足AC+BC=a,請直接寫出線段MN的長;
(3)若點C為線段AB延長線上任意一點,且滿足AC-CB=b,求線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在某商店購買商品A、B共兩次,這兩次購買商品A、B的數(shù)量和費用如表:
購買商品A的數(shù)量(個) | 購買商品B的數(shù)量(個) | 購買總費用(元) | |
第一次購物 | 4 | 3 | 93 |
第二次購物 | 6 | 6 | 162 |
若小麗需要購買3個商品A和2個商品B,則她要花費( )
A.64元
B.65元
C.66元
D.67元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.
(1)求一次至少購買多少只計算器,才能以最低價購買?
(2)求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當(dāng)10<x≤50時,為了獲得最大利潤,店家一次應(yīng)賣多少只?這時的售價是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD交于點O,CE平分∠BCD交AB于點E,交BD于點F,且∠ABC=60°,AB=2BC,連接OE.下列結(jié)論:
①∠ACD=30°;②SABCD=ACBC;③OE:AC= :6;④S△OCF=2S△OEF
成立的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,圖形是一種重要的數(shù)學(xué)語言,它直觀形象,能有效地表現(xiàn)一些代數(shù)中的數(shù)量關(guān)系,對幾何圖形做出代數(shù)解釋和用幾何圖形的面積表示代數(shù)恒等式是互逆的.課本上由拼圖用幾何圖形的面積來驗證了乘法公式,一些代數(shù)恒等式也能用這種形式表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用圖①或圖②等圖形的面積表示.
(1)填一填:請寫出圖③所表示的代數(shù)恒等式:______________________________;
(2)畫一畫:試畫出一個幾何圖形,使它的面積能表示:(a+b)(a+3b)=a2+4ab+3b2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小源的父母決定中考之后帶她去旅游,初步商量有意向的四個景點分別為:A.明月山,B.廬山,C.婺源,D.三清山.由于受到時間限制,只能選兩個景點,于是小源的父母決定通過抽簽選擇,用四張小紙條分別寫上四個景點做成四個簽(外表無任何不同),讓小源隨機抽兩次,每次抽一個簽,每個簽抽到的機會相等.
(1)小源最希望去婺源,則小源第一次恰好抽到婺源的概率是多少;
(2)除婺源外,小源還希望去明月山,求小源抽到婺源、明月山兩個景點中至少一個的概率是多少.(通過“畫樹狀圖”或“列表”進行分析)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com