布袋中裝有3個紅球和6個白球,它們除顏色外其他都相同,如果從布袋里隨機(jī)摸出一個球,那么所摸到的球恰好為紅球的概率是 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


在某一時刻,測得一根高為1.8m的竹竿的影長為3m,同時測得一根旗桿的影長為25m,那么這根旗桿的高度為   m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖①,雙曲線y=(k≠0)和拋物線y=ax2+bx(a≠0)交于A、B、C三點,其中B(3,1),C(﹣1,﹣3),直線CO交雙曲線于另一點D,拋物線與x軸交于另一點E.

(1)求雙曲線和拋物線的解析式;

(2)拋物線在第一象限部分是否存在點P,使得∠POE+∠BCD=90°?若存在,請求出滿足條件的點P的坐標(biāo);若不存在,請說明理由;

(3)如圖②過B作直線l⊥OB,過點D作DF⊥l于點F,BD與OF交于點N,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 

解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


數(shù)學(xué)問題:計算+++…+(其中m,n都是正整數(shù),且m≥2,n≥1).

探究問題:為解決上面的數(shù)學(xué)問題,我們運(yùn)用數(shù)形結(jié)合的思想方法,通過不斷地分割一個面積為1的正方形,把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來,并采取一般問題特殊化的策略來進(jìn)行探究.

探究一:計算+++…+

第1次分割,把正方形的面積二等分,其中陰影部分的面積為;

第2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為+

第3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,…;

第n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為+++…+,最后空白部分的面積是

根據(jù)第n次分割圖可得等式:+++…+=1﹣

探究二:計算+++…+

第1次分割,把正方形的面積三等分,其中陰影部分的面積為;

第2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為+;

第3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,…;

第n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為+++…+,最后空白部分的面積是

根據(jù)第n次分割圖可得等式:+++…+=1﹣,

兩邊同除以2,得+++…+=

探究三:計算+++…+

(仿照上述方法,只畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并寫出探究過程)

解決問題:計算+++…+

(只需畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并完成以下填空)

根據(jù)第n次分割圖可得等式: +++…+=1 ,

所以,+++…+=  

拓廣應(yīng)用:計算 +++…+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


分解因式:a3﹣4a2+4a= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,過點O作直線與雙曲線y=(k≠0)交于A、B兩點,過點B作BC⊥x軸于點C,作BD⊥y軸于點D.在x軸上分別取點E、F,使點A、E、F在同一條直線上,且AE=AF.設(shè)圖中矩形ODBC的面積為S1,△EOF的面積為S2,則S1、S2的數(shù)量關(guān)系是( 。

 

A.

S1=S2

B.

2S1=S2

C.

3S1=S2

D.

4S1=S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列命題是假命題的是( 。

 

A.

不在同一直線上的三點確定一個圓

 

B.

矩形的對角線互相垂直且平分

 

C.

正六邊形的內(nèi)角和是720°

 

D.

角平分線上的點到角兩邊的距離相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知a為大于2的整數(shù),若關(guān)于x的不等式無解.

(1)求a的值;

(2)化簡并求(﹣1)+的值.

查看答案和解析>>

同步練習(xí)冊答案