【題目】金秋十月,丹桂飄香,重慶雙福育才中學迎來了首屆行知創(chuàng)新科技大賽,初二年級某班共有18人報名參加航海組,航空組和無人機組三個項目組的比賽(每人限參加一項),其中航海組的同學比無人機組的同學的兩倍少3人,航空組的同學不少于3人但不超過9人,班級決定為航海組的每位同學購買2個航海模型,為航空組的每位同學購買3個航空模型,為無人機組的每位同學購買若干個無人機模型,已知航海模型75元每個,航空模型98元每個,無人機模型165元每個,若購買這三種模型共需花費6114元,則其中購買無人機模型的費用是__________

【答案】3300

【解析】

設無人機組有x個同學,航空組有y個同學,根據(jù)人數(shù)為18列出二元一次方程,根據(jù)航空組的同學不少于3人但不超過9人,得到x,y的解,再代入模型費用進行驗證即可求解.

設無人機組有x個同學,航空組有y個同學,

依題意得x+2x-3+y=18

解得x=

∵航空組的同學不少于3人但不超過9人,x,y為正整數(shù),

故方程的解為,

設為無人機組的每位同學購買a個無人機模型,

時,依題意得6a×165+2×9×75+3×3×98=6114

解得a=,不符合題意;

時,依題意得5a×165+2×7×75+6×3×98=6114

解得a=4,符合題意,故購買無人機模型的費用是3300元;

時,依題意得4a×165+2×5×75+9×3×98=6114

解得a=,不符合題意;

綜上,答案為3300.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,DE是邊AB的垂直平分線,交ABE、交ACD,連接BD.

(1)若∠A40°,求∠DBC的度數(shù).

(2)若△BCD的周長為16cm,△ABC的周長為26cm,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司的午餐采用自助的形式,并倡導員工適度取餐,減少浪費該公司共有10個部門,且各部門的人數(shù)相同.為了解午餐的浪費情況,從這10個部門中隨機抽取了兩個部門,進行了連續(xù)四周(20個工作日)的調查,得到這兩個部門每天午餐浪費飯菜的重量,以下簡稱每日餐余重量(單位:千克),并對這些數(shù)據(jù)進行了整理、描述和分析.下面給出了部分信息..部門每日餐余重量的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,):

.部門每日餐余重量在這一組的是:6.1 6.6 7.0 7.0 7.0 7.8

.部門每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8

. 兩個部門這20個工作日每日餐余重量的平均數(shù)、中位數(shù)、眾數(shù)如下:

部門

平均數(shù)

中位數(shù)

眾數(shù)

6.4

7.0

/p>

6.6

7.2

根據(jù)以上信息,回答下列問題:

1)寫出表中的值;

2)在這兩個部門中,適度取餐,減少浪費做得較好的部門是________(填),理由是____________

3)結合這兩個部門每日餐余重量的數(shù)據(jù),估計該公司(10個部門)一年(按240個工作日計算)的餐余總重量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)的圖象關于原點成中心對稱,我們就稱其中一個函數(shù)是另一個函數(shù)的中心對稱函數(shù),也稱函數(shù)互為中心對稱函數(shù).

求函數(shù)的中心對稱函數(shù);

如圖,在平面直角坐標系xOy中,E,F(xiàn)兩點的坐標分別為,,二次函數(shù)的圖象經(jīng)過點E和原點O,頂點為已知函數(shù)互為中心對稱函數(shù);

請在圖中作出二次函數(shù)的頂點作圖工具不限,并畫出函數(shù)的大致圖象;

當四邊形EPFQ是矩形時,請求出a的值;

已知二次函數(shù)互為中心對稱函數(shù),且的圖象經(jīng)過的頂點當時,求代數(shù)式的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰中,,點的中點,點上,,將線段繞點按順時針方向旋轉得到,連接,然后把沿著翻折得到,連接,,取的中點,連接,則的長為(

A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象與軸交于、兩點,與軸交于點,的坐標為,且當時二次函數(shù)的函數(shù)值相等.

)求實數(shù)、的值.

)如圖,動點、同時從點出發(fā),其中點以每秒個單位長度的速度沿邊向終點運動,點以每秒個單位長度的速度沿射線方向運動,當點停止運動時,點隨之停止運動.設運動時間為秒.連接,將沿翻折,使點落在點處,得到

①是否存在某一時刻,使得為直角三角形?若存在,求出的值;若不存在,請說明理由.

②設重疊部分的面積為,求關于的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABEF,則∠A、∠C、∠D、∠E滿足的數(shù)量關系是( )

A. A+∠C+∠D+∠E360°B. A-∠C+∠D+∠E180°

C. E-∠C+∠D-∠A90°D. A+∠D=∠C+∠E

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例y=的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內交于A(4,a).

(1)求一次函數(shù)的解析式;

(2)若直線x=n(0<n<4)與反比例函數(shù)和一次函數(shù)的圖象分別交于點B,C,連接AB,若△ABC是等腰直角三角形,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸交于點,與反比例函數(shù)的圖象交于點,過軸于點,且

的值;

是反比例函圖象上的點,在軸上是否存在點,使得最小?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案