【題目】黨的“十六大”報(bào)告提出全面建設(shè)小康社會(huì),加快推進(jìn)社會(huì)主義現(xiàn)代化,力爭(zhēng)國民經(jīng)濟(jì)總產(chǎn)值到2020年比2000年翻兩翻,以每十年為基準(zhǔn)計(jì)算,增長率為x,則( 。
A. (1+x)2=2B. (1+x)2=4
C. (1+x)2+2(1+x)=4D. 1+2x=2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于二次三項(xiàng)式x2+2ax+a2這樣的完全平方式,可以用公式法將它分解為(x+a)2的形式,但是,對(duì)于一般二次三項(xiàng)式,就不能直接應(yīng)用完全平方公式了,我們可以在二次三項(xiàng)式中先加上一項(xiàng),使其成為完全平方式,再減去這項(xiàng),使整個(gè)式子的值不變,如x2+2ax-3a2=x2+2ax+a2-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).像上面這樣把二次三項(xiàng)式分解因式的方法叫做配方法.用上述方法把m2-6m+8分解因式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C分別在坐標(biāo)軸上,頂點(diǎn)B的坐標(biāo)為(6,4),E為AB的中點(diǎn),過點(diǎn)D(8,0)和點(diǎn)E的直線分別與BC、y軸交于點(diǎn)F,G.
(1)求直線DE的函數(shù)關(guān)系式;
(2)函數(shù)y=mx﹣2的圖象經(jīng)過點(diǎn)F且與x軸交于點(diǎn)H,求出點(diǎn)F的坐標(biāo)和m值;
(3)在(2)的條件下,求出四邊形OHFG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A(0,6),B(8,0),點(diǎn)C是線段AB的中點(diǎn),CD⊥OB交OB于D,Rt△EFH的斜邊EH在射線AB上,頂點(diǎn)F在射線AB的左側(cè),EF∥OA,點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度向B運(yùn)動(dòng),到點(diǎn)B停止,AE=EF,運(yùn)動(dòng)時(shí)間為t(s).
(1)在Rt△EFH中,EF= ,EH= ,點(diǎn)F坐標(biāo)為( , )(用含t的代數(shù)式表示)
(2)t為何值時(shí),H與C重合?
(3)設(shè)△EFH與△CDB重疊部分圖形的面積為S(S>0),求S與t的函數(shù)關(guān)系式。
(4)在整個(gè)運(yùn)動(dòng)過程中,Rt△EFH掃過的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組中的四條線段是成比例線段的是( 。
A. 4cm、4cm、5cm、6cmB. 1cm、2cm、3cm、5cm
C. 3cm、4cm、5cm、6cmD. 1cm、2cm、2cm、4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個(gè)圓柱形的餅干盒,在盒子外側(cè)下底面的點(diǎn)A處有甲、乙兩只螞蟻,它們都想要吃到上底面外側(cè)B′處的食物:甲螞蟻沿A→A′→B′的折線爬行,乙螞蟻沿圓柱的側(cè)面爬行:若∠AOB=∠A′O′B′=90°(AA′、BB′都與圓柱的中軸線OO′平行),圓柱的底面半徑是12cm,高為1cm,則:
(1)A′B′=cm,甲螞蟻要吃到食物需爬行的路程長l1=cm;
(2)乙螞蟻要吃到食物需爬行的最短路程長l2=cm(π取3);
(3)若兩只螞蟻同時(shí)出發(fā),且爬行速度相同,在乙螞蟻采取最佳策略的前提下,哪只螞蟻先到達(dá)食物處?請(qǐng)你通過計(jì)算或合理的估算說明理由.(參考數(shù)據(jù):π取3, ≈1.4)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com