【題目】如圖,在正方形ABCD中,連接BD,點(diǎn)E為CB邊的延長(zhǎng)線上一點(diǎn),點(diǎn)F是線段AE的中點(diǎn),過(guò)點(diǎn)F作AE的垂線交BD于點(diǎn)M,連接ME、MC.
(1)根據(jù)題意補(bǔ)全圖形,猜想與的數(shù)量關(guān)系并證明;
(2)連接FB,判斷FB 、FM之間的數(shù)量關(guān)系并證明.
【答案】(1)=(2)
【解析】
(1)①按照題中要求補(bǔ)全圖形即可;②如圖1,連接AM,由已知條件易得MF是AE的垂直平分線,由此可得MA=ME,由四邊形ABCD是正方形易得點(diǎn)A和點(diǎn)C關(guān)于BD對(duì)稱,由此可得MA=MC,從而可得ME=MC,進(jìn)而可得∠MEC=∠MCE;
(2)如圖2,由已知易得∠MAD=∠MCD結(jié)合∠MEC=∠MCE可得∠MAD+∠MEC=∠MCD+∠MCE=90°,由AD∥CB可得∠MAD+∠MEC+∠MAE+∠MEA=180°,由此可得∠MAE+∠MEA=90°,從而可得∠AME=90°,結(jié)合點(diǎn)F是AE的中點(diǎn)可得MF=AE,結(jié)合在Rt△ABE中,BF=AE即可得到BF=MF.
(1)①按題要求補(bǔ)全圖形如下圖所示:
②∠MEC=∠MCE,理由如下:
如圖1,連接AM,
∵點(diǎn)F是AE的中點(diǎn),FM⊥AE,
∴MA=ME,
∵點(diǎn)A、點(diǎn)C是關(guān)于正方形ABCD對(duì)角線BD所在直線的對(duì)稱點(diǎn),
∴MA=MC,
∴ME=MC,
∴∠MEC=∠MCE;
(2)如圖2,F(xiàn)B=FM,理由如下:
∵點(diǎn)M在正方形ABCD的對(duì)角線BD,
∴,
∴=,
∵=,
∴ ,
∵ ,
∴ ,
∴,
∴,
∵ 點(diǎn)F是AE的中點(diǎn),
∴
∵ 在△ABE中,∠ABE=90°,點(diǎn)F是AE的中點(diǎn),
∴ ,
∴ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,以為邊在數(shù)軸的上方作正方形ABCD.動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)勻速運(yùn)動(dòng),到達(dá)點(diǎn)后再以同樣的速度沿?cái)?shù)軸正方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)若點(diǎn)在線段.上運(yùn)動(dòng),當(dāng)t為何值時(shí),?
(2)若點(diǎn)在線段上運(yùn)動(dòng),連接,當(dāng)t為何值時(shí),三角形的面積等于正方形面積的?
(3)在點(diǎn)和點(diǎn)運(yùn)動(dòng)的過(guò)程中,當(dāng)為何值時(shí),點(diǎn)與點(diǎn)恰好重合?
(4)當(dāng)點(diǎn)在數(shù)軸上運(yùn)動(dòng)時(shí),是否存在某-時(shí)刻t,使得線段的長(zhǎng)為,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題,已知A,B兩地相距60千米,甲騎自行車,乙騎摩托車都沿一條筆直的公路由A地勻速行駛到B地,乙每小時(shí)比甲多行30千米.甲比乙早出發(fā)3小時(shí),乙出發(fā)1小時(shí)后剛好追上甲.
(1)求甲的速度;
(2)問(wèn)乙出發(fā)之后,到達(dá)B地之前,何時(shí)甲乙兩人相距6千米;
(3)若丙騎自行車與甲同時(shí)出發(fā),沿著這條筆直的公路由B地勻速行駛到A地.經(jīng)過(guò)小時(shí)與乙相遇,求此時(shí)甲、丙兩人之間距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)與反比例函數(shù)(k≠0)的圖象相交于點(diǎn) .
(1)求k的值;
(2)點(diǎn)是y軸上一點(diǎn),過(guò)點(diǎn)P且平行于x軸的直線分別與一次函數(shù)、反比例函數(shù)的圖象相交于點(diǎn)、,當(dāng)時(shí),畫(huà)出示意圖并直接寫(xiě)出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上有兩個(gè)長(zhǎng)方形和,這兩個(gè)長(zhǎng)方形的寬都是2個(gè)單位長(zhǎng)度,長(zhǎng)方形的長(zhǎng)是4個(gè)單位長(zhǎng)度,長(zhǎng)方形的長(zhǎng)是8個(gè)單位長(zhǎng)度,點(diǎn)在數(shù)軸上表示的數(shù)是5,且兩點(diǎn)之間的距離為12.
(1)填空:點(diǎn)在數(shù)軸上表示的數(shù)是_________ ,點(diǎn)在數(shù)軸上表示的數(shù)是_________.
(2)若線段的中點(diǎn)為,線段EH上有一點(diǎn),, 以每秒4個(gè)單位的速度向右勻速運(yùn)動(dòng),以每秒3個(gè)單位的速度向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,求當(dāng)多少秒時(shí),.
(3)若長(zhǎng)方形以每秒2個(gè)單位的速度向右勻速運(yùn)動(dòng),長(zhǎng)方形固定不動(dòng),當(dāng)兩個(gè)長(zhǎng)方形重疊部分的面積為6時(shí),求長(zhǎng)方形運(yùn)動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,連接BE交對(duì)角線AC于點(diǎn)F,則∠EFC=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上三點(diǎn)M,O,N對(duì)應(yīng)的數(shù)分別為-1,0,3,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x.
(1)MN的長(zhǎng)為 ;
(2)如果點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,那么x的值是 ;
(3)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是8?若存在,直接寫(xiě)出x的值;若不存在,請(qǐng)說(shuō)明理由.
(4)如果點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】是線段上任一點(diǎn),,兩點(diǎn)分別從同時(shí)向點(diǎn)運(yùn)動(dòng),且點(diǎn)的運(yùn)動(dòng)速度為,點(diǎn)的運(yùn)動(dòng)速度為,運(yùn)動(dòng)的時(shí)間為.
(1)若,
①運(yùn)動(dòng)后,求的長(zhǎng);
②當(dāng)在線段上運(yùn)動(dòng)時(shí),試說(shuō)明;
(2)如果時(shí),,試探索的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近段時(shí)間,“垃圾分類”一詞頻上熱搜,南開(kāi)中學(xué)初一年級(jí)開(kāi)展了“垃圾分類”的主題班會(huì).為了解同學(xué)們對(duì)垃圾分類知識(shí)的掌握情況,小南就“玻璃碎片屬于什么垃圾”在初一年級(jí)隨機(jī)抽取了若干名同學(xué)進(jìn)行了抽樣調(diào)查,并繪制了如下兩隔不完整的統(tǒng)計(jì)圖:
(1)本次抽樣調(diào)查中,樣本容量為______,扇形統(tǒng)計(jì)圖中,類觀點(diǎn)對(duì)應(yīng)的圓心角度數(shù)是______度;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖:
(3)估計(jì)該校4000名學(xué)生中贊成觀點(diǎn)的人數(shù)約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com