【題目】在一次蠟燭燃燒試驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(厘米)與燃燒時(shí)間x(小時(shí))之間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象所提供的信息解答下列問題:

1)甲、乙兩根蠟燭燃燒前的高度分別是 ,從點(diǎn)燃到燃盡甲所用的時(shí)間為

2)分別求甲、乙兩根蠟燭燃燒時(shí)yx之間的函數(shù)關(guān)系式;

3)燃燒多長(zhǎng)時(shí)間時(shí),甲、乙兩根蠟燭的高度相等(不考慮都燃盡時(shí)的情況)?在什么時(shí)間段內(nèi),甲蠟燭比乙蠟燭高?在什么時(shí)間段內(nèi),甲蠟燭比乙蠟低?

【答案】130cm、25cm2小時(shí)、2.5小時(shí);(2y=-15x+30,y=-10x+25.(3)燃燒1小時(shí)時(shí),甲、乙兩根蠟燭的高度相等;觀察圖象可以看出,當(dāng)時(shí),甲蠟燭比乙蠟燭高;當(dāng)時(shí),甲蠟燭比乙蠟燭低.

【解析】

試題(1)由圖象可知:甲、乙兩根蠟燭燃燒前的高度分別是30cm、25cm,從點(diǎn)燃到燃盡所用的時(shí)間分別是2h、25h;(2)根據(jù)直線經(jīng)過點(diǎn)的坐標(biāo)列方程組解方程組即可求得函數(shù)解析式;(3)兩直線的交點(diǎn)就是高度相同的時(shí)刻,根據(jù)圖象即可解答.

試題解析:(1)甲、乙兩根蠟燭燃燒前的高度分別是30厘米、25厘米,從點(diǎn)燃到燃盡所用的時(shí)間分別是2小時(shí)、25小時(shí).

2)設(shè)甲蠟燭燃燒時(shí)yx之間的函數(shù)關(guān)系式為y=k1x+b1

由圖可知,函數(shù)的圖象過點(diǎn)(2,0),(030),

,

解得

∴y=﹣15x+30

設(shè)乙蠟燭燃燒時(shí)yx之間的函數(shù)關(guān)系式為y=k2x+b2

由圖可知,函數(shù)的圖象過點(diǎn)(25,0),(0,25),

,

解得

∴y=﹣10x+25

由題意得﹣15x+30=﹣10x+25,解得x=1

所以,當(dāng)燃燒1小時(shí)的時(shí)候,甲、乙兩根蠟燭的高度相等.

觀察圖象可知:當(dāng)0≦x1時(shí),甲蠟燭比乙蠟燭高;

當(dāng)1x25時(shí),甲蠟燭比乙蠟燭低.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O及⊙O外一點(diǎn)P,過點(diǎn)P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學(xué)的作業(yè):

甲:①連接OP,作OP的垂直平分線l,交OP于點(diǎn)A;

②以點(diǎn)A為圓心、OA為半徑畫弧、交⊙O于點(diǎn)M;

③作直線PM,則直線PM即為所求(如圖1)

乙:①讓直角三角板的一條直角邊始終經(jīng)過點(diǎn)P;

②調(diào)整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點(diǎn)落在⊙O上,記這時(shí)直角頂點(diǎn)的位置為點(diǎn)M

③作直線PM,則直線PM即為所求(如圖2)

對(duì)于兩人的作業(yè),下列說法正確的是( )

A. 甲乙都對(duì)B. 甲乙都不對(duì)

C. 甲對(duì),乙不對(duì)D. 甲不對(duì),已對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+2x+c(a<0)與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,OB=OC=3.

(1)求該拋物線的函數(shù)解析式.

(2)如圖1,連接BC,點(diǎn)D是直線BC上方拋物線上的點(diǎn),連接OD,CD.ODBC于點(diǎn)F,當(dāng)SCOF:SCDF=3:2時(shí),求點(diǎn)D的坐標(biāo).

(3)如圖2,點(diǎn)E的坐標(biāo)為(0,),點(diǎn)P是拋物線上的點(diǎn),連接EB,PB,PE形成的△PBE中,是否存在點(diǎn)P,使∠PBE或∠PEB等于2∠OBE?若存在,請(qǐng)直接寫出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB4cm,BC8cmEF分別是AB、BC的中點(diǎn).則EDF的距離是_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角∠MBN的余弦值為,點(diǎn)C在射線BN上,BC25,點(diǎn)A在∠MBN的內(nèi)部,且∠BAC90°,∠BCA=∠MBN.過點(diǎn)A的直線DE分別交射線BM、射線BN于點(diǎn)DE.點(diǎn)F在線段BE上(點(diǎn)F不與點(diǎn)B重合),且∠EAF=∠MBN

1)如圖1,當(dāng)AFBN時(shí),求EF的長(zhǎng);

2)如圖2,當(dāng)點(diǎn)E在線段BC上時(shí),設(shè)BFx,BDy,求y關(guān)于x的函數(shù)解析式并寫出函數(shù)定義域;

3)聯(lián)結(jié)DF,當(dāng)ADFACE相似時(shí),請(qǐng)直接寫出BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一批單價(jià)為4元的日用品,若按每件5元的價(jià)格銷售,每天能賣出300件,若按每件6元的價(jià)格銷售,每天能賣出200件,假定每天銷售件數(shù)(件)與價(jià)格(元/件)之間滿足一次函數(shù)關(guān)系.

1)試求之間的函數(shù)關(guān)系式;

2)令每天的利潤(rùn)為,求出之間的函數(shù)關(guān)系式;當(dāng)銷售價(jià)格定為多少時(shí),才能使每天的利潤(rùn)最大?每天最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現(xiàn)計(jì)劃開鑿隧道A,B兩地直線貫通,經(jīng)測(cè)量得:CAB=30°,CBA=45°,AC=20km,求隧道開通后與隧道開通前相比,從A地到B地的路程將縮短多少?(結(jié)果精確到0.1km,參考數(shù)據(jù): ≈1.414, ≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是圓O的切線,切點(diǎn)為AAB是圓O的弦。過點(diǎn)BBC//AD,交圓O于點(diǎn)C,連接AC,過點(diǎn)CCD//AB,交AD于點(diǎn)D。連接AO并延長(zhǎng)交BC于點(diǎn)M,交過點(diǎn)C的直線于點(diǎn)P,且BCP=ACD

1判斷直線PC與圓O的位置關(guān)系,并說明理由:

2 AB=9,BC=6,求PC的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB中,∠O=90°,AO=8cm,BO=6cm,點(diǎn)CA點(diǎn)出發(fā),在邊AO上以2cm/s的速度向O點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)D從點(diǎn)B出發(fā),在邊BO上以1.5cm/s的速度向O點(diǎn)運(yùn)動(dòng),過OC的中點(diǎn)ECD的垂線EF,則當(dāng)點(diǎn)C運(yùn)動(dòng)了__s時(shí),以C點(diǎn)為圓心,1.5cm為半徑的圓與直線EF相切.

查看答案和解析>>

同步練習(xí)冊(cè)答案