【題目】已知拋物線的頂點坐標為且經(jīng)過點動直線的解析式為

1)求拋物線的解析式;

2)將拋物線向上平移一個單位得到新的拋物線,過點的直線交拋物線于兩點(點位于點的左邊),動直線過點,與拋物線的另外一個交點為點求證:直線恒過一個定點;

3)已知點,且點在動直線上,若是以為頂角的等腰三角形,這樣的等腰三角形有且只存在一個,請求出的值.

【答案】1;(2)證明見解析;(3

【解析】

1)先根據(jù)頂點坐標可設其解析式的頂點式,再將點代入求解即可;

2)先根據(jù)二次函數(shù)圖象的平移得到拋物線的解析式,設點M的坐標為,分別求出直線MN、動直線的解析式,然后分別聯(lián)立兩個一次函數(shù)與拋物線的解析式,求出點P、N的坐標,最后利用待定系數(shù)法求出直線PN的解析式,由此即可得證;

3)設點C的坐標為,先根據(jù)兩點之間的距離公式求出AB、BC的長,再根據(jù)等腰三角形的定義得出,從而可得一個關于的一元二次方程,然后利用根的判別式求解即可.

1拋物線的頂點坐標為

可設拋物線的解析式的頂點式為

將點代入得:,解得

故拋物線的解析式為;

2)由題意得:拋物線的解析式為,即

設點M的坐標為

設直線MN的解析式為

將點,代入得,解得

則直線MN的解析式為

聯(lián)立

設點

是關于x的一元二次方程的兩根

由根與系數(shù)的關系得

解得

代入拋物線的解析式得:

將點代入,解得

則動直線的解析式為

聯(lián)立

設點

是關于x的一元二次方程的兩根

由根與系數(shù)的關系得

解得

代入拋物線的解析式得:

設直線PN的解析式為

代入得:

代入得:

解得

則直線PN的解析式為

由此可知,當時,

即無論m取何值,直線PN恒過定點;

3)設點C的坐標為

,

是以為頂角的等腰三角形,則,從而有

整理得

因為這樣的等腰三角形有且只存在一個

所以關于的一元二次方程有兩個相等的實數(shù)根

則此方程的根的判別式

解得

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點在平行四邊形的對角線上,過點分別作、的平行線相交于點,連接,

1)求證:四邊形是菱形;

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,斜坡AB的長為65米,坡度i124,BCAC

(參考三角函數(shù):sin37°≈ ,cos37°≈ ,tan37°≈

1)求斜坡的高度BC

2)現(xiàn)計劃在斜坡AB的中點D處挖去部分坡體,修建一個平行于水平線CA的平臺DE和一條新的斜坡BE,若斜坡BE的坡角為37°,求平臺DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算:6cos45°+1.730+|53|+42017×(﹣0.252017;

2)先化簡,再求值:(a+1)÷a,并從﹣10,2中選一個合適的數(shù)作為a的值代入求值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“長跑”是中考體育考試項目之一.某中學為了解九年級學生“長跑”的情況,隨機抽取部分九年級學生,測試其長跑成績(男子1000米,女子800米),按長跑的時間的長短依次分為AB,C,D四個等級進行統(tǒng)計,并繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

1)在這次調(diào)查中共抽取了  名學生,扇形統(tǒng)計圖中,D類所對應的扇形圓心角大小為 ;

2)所抽取學生“長跑”測試成績的中位數(shù)會落在 等級;

3)若該校九年級共有900名學生,請你估計該校C等級的學生約在多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題發(fā)現(xiàn):

1)如圖①,在中,,,,點的中點,點邊上,將沿著折疊后得到,連接并使得最小,請畫出符合題意的點

問題探究:

2)如圖②,已知在中,,,連接,點的中點,連接,求的最大值;

問題解決:

3)西安大明宮遺址公園是世界文化遺產(chǎn),全國重點文物保護單位,為了豐富同學們的課外學習生活,培養(yǎng)同學們的探究實踐能力,周末光明中學的張老師在家委會的協(xié)助下,帶領全班同學去大明宮開展研學活動.在公園開設的一處沙地考古模擬場地上,同學們參加了一次模擬考古游戲.張老師為同學們現(xiàn)場設計了一個四邊形的活動區(qū)域,如圖③所示,其中為一條工作人員通道,同學們的入口設在點處,,,,米.在上述條件下,小明想把寶物藏在距入口盡可能遠的處讓小鵬去找,請問小明的想法是否可以實現(xiàn)?如果可以,請求出的最大值及此時區(qū)域的面積,如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,依次連接第一個矩形各邊的中點得到一個菱形,再依次連接菱形各邊的中點得到第二個矩形,按照此方法繼續(xù)下去.已知第一個矩形的兩條鄰邊長分別為68,則第n個菱形的周長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ΔABC中,AB=AC,A=40O,延長ACD,使CD=BC,點PΔABD的內(nèi)心,則∠BPC=

A. 105° B. 110° C. 130° D. 145°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為爭創(chuàng)文明城市,我市交警部門在全市范圍開展了安全使用電瓶車專項宣傳活動.在活動前和活動后分別隨機抽取了部分使用電瓶車的市民,就騎電瓶車戴安全帽情況進行問卷調(diào)查,并將兩次收集的數(shù)據(jù)制成如下統(tǒng)計圖表.

類別

人數(shù)

百分比

A

68

6.8%

B

245

b%

C

a

51%

D

177

17.7%

總計

c

100%

根據(jù)以上提供的信息解決下列問題:

1a= b= c=

2)若我市約有30萬人使用電瓶車,請分別計算活動前和活動后全市騎電瓶車都不戴安全帽的人數(shù).

3)經(jīng)過某十字路口,汽車無法繼續(xù)直行只可左轉(zhuǎn)或右轉(zhuǎn),電動車不受限制,現(xiàn)有一輛汽車和一輛電動車同時到達該路口,用畫樹狀圖或列表的方法求汽車和電動車都向左轉(zhuǎn)的概率.

查看答案和解析>>

同步練習冊答案